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1 IntroductionLarge-scale heterogeneous electronic text collections are more available now than ever be-fore and range from published documents (e.g. electronic dictionaries and encyclopedias,libraries and archives, newspaper �les, telephone directories, textbook materials, etc.) toprivate databases (e.g., marketing information, legal records, medical histories, etc.). Agreat number of texts are spread over Internet every day in the form of electronic mail,bulletin boards, World Wide Web pages, etc. Online providers of legal and newswire textsalready have hundreds of text gigabytes and will soon have terabytes. Many applicationstreat large text collections that change over time, such as data compression [49, 50, 14, 35],computer virus detection [28], genome data banks [21], telephone directory handling [12]and software maintenance [7]. Last but not least, databases can also be considered dynamictext collections because their records are essentially byte sequences that change over time.In this context, indexing data structures and searching engines are fundamental tools forstoring, updating and extracting useful information from data in external storage devices(e.g., disks or CD-ROMs). However, while main memory is a high-speed electronic device,external memory is essentially a low-speed mechanical device. Main-memory access timeshave decreased from 30 to 80 percent a year, while external-memory access times havenot improved much at all over the past twenty years [38]. Nevertheless, we need exter-nal storage because we cannot build a main memory having an unbounded capacity andsingle-cycle access time. Ongoing research is trying to improve the input/output subsystemby introducing some hardware mechanisms such as disk arrays, disk caches, etc. [38], andis investigating how to arrange data on disks by means of some e�cient algorithms anddata structures that minimize the number of external-memory accesses [45]. We thereforebelieve that the design and analysis of external-memory text-indexing data structures isvery important from both a theoretical and a practical point of view.Surprisingly enough, in scienti�c literature, no good worst-case bounds have been ob-tained for algorithms and data structures manipulating arbitrarily-long strings in externalmemory. As far as traditional external-memory data structures are concerned, inverted�les [39], B-trees [9] and their variations, such as Pre�x B-trees [10, 15], are well-knownand ubiquitous tools for manipulating large data but their worst-case performance is note�cient enough when their keys are arbitrarily long. As far as string-matching data struc-tures are concerned, su�x arrays [22, 33], Patricia tries [22, 36] and su�x trees [34, 48] areparticularly e�ective in handling unbounded-length strings which are small enough to �tinto main memory. However, they are no longer e�cient when the text collection becomeslarge, changes over time and makes considerable use of external memory. Their worst-caseine�ciency is mainly due to the fact that they have to be packed into the disk pages inorder to avoid that too many pages remain almost empty after a few updates. In the worstcase, this situation can seriously degenerate in external memory. In Section 5, we discussin detail the properties and drawbacks of these tools.As a result, the design of external-memory text-indexing data structures whose perfor-mance is provably good in the worst case is important. In this paper, we introduce a newdata structure, the String B-Tree 1 which achieves this goal. In a short phrase, it is a com-1The original name of the data structure was SB-tree [18, 19]. Recently, Don Knuth pointed out the1
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bination of B-trees and Patricia tries for internal-node indices that is made more e�ectiveby adding extra pointers to speed up search and update operations. In a certain sense,String B-trees link external-memory data structures to string-matching data structuresby overcoming the theoretical limitations of inverted �les (modi�ability and atomic keys),su�x arrays (modi�ability and contiguous space), su�x trees (unbalanced tree topology)and pre�x B-trees (bounded-length keys). The String B-tree is the �rst external-memorydata structure that has the same worst-case performance as regular B-trees but handlesunbounded-length strings and performs much more powerful search operations such as theones supported by su�x trees.We formalize our operations by means of two basic problems. We use standard termi-nology for an s-character string X[1; s] by callingX[1; i] a pre�x , X[j; s] a su�x and X[i; j]a substring of X, for 1 � i � j � s. We say that there is an occurrence of a pattern stringP in X if we can �nd a substring X[i; i+ jP j � 1] equal to P .Problem 1 (Pre�x Search and Range Query). Let � = f�1; : : : ; �kg be a set of textstrings whose total length is N . We store � and keep it sorted in external memory un-der the insertion and deletion of individual text strings. We allow for the following twoqueries: (1) Pre�x Search(P ) retrieves all of �'s strings whose pre�x is pattern P ; (2) RangeQuery(K 0; K 00) retrieves all of �'s strings between K 0 to K 00 in lexicographic order. We letocc denote the number of strings retrieved by a query.Problem 1 represents the typical indexing problem solved by B-trees, here generalizedto treat unbounded-length strings. For example, let us examine string set � = f`ace', `aid',`atlas', `atom', `attenuate', `by', `bye', `car', `cod', `dog', `�t', `lid', `patent', `sun', `zoo'g.Pre�x Search(`at') retrieves strings: `atlas', `atom' and `attenuate' (here, occ = 3), whileRange Query(`cap', `left') retrieves strings: `car', `cod', `dog' and `�t' (here, occ = 4).Problem 2 (Substring Search). Let � = f�1; : : : ; �kg be a set of text strings whosetotal length is N . We store � in external memory and maintain it under the insertion anddeletion of individual text strings. We allow for the query: Substring Search(P ) �nds all ofP 's occurrences in �'s strings. We denote the number of such occurrences by occ.Problem 2 extends Problem 1 because it deals with arbitrary substrings of �'s strings.For example, Substring Search(`at') retrieves occurrences `atlas',`atom', `attenuate' and`patent' (here, occ = 5). This generalization inevitably complicates the update operationsbecause, while updating � in Problem 1 only involves a single text string, in Problem 2 itinvolves all of its su�xes.We investigate Problems 1 and 2 in the classical two-level memory model [16]. Itassumes that there is a fast and small main memory (i.e., random access memory) and aslow and large external memory (i.e., secondary storage devices such as magnetic disks orCD-ROMs). The external memory is assumed to be partitioned into transfer blocks, calleddisk pages, each of which contains B atomic items, like integers, characters and pointers.We call B the disk page size and a disk page reading or writing operation disk access.According to [16], we analyze and provide asymptotical bounds for: (a) the total numberexistence of a di�erent data structure named \SB-tree" [37], where the \S" stands for \sequential".2
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of disk accesses performed by the various operations; (b) the total number of disk pagesoccupied by the data structure.In the scienti�c literature there are several indexing data structures that can be em-ployed to e�ciently solve Problems 1 and 2. We discuss them in detail in Section 5. Wewish to point out here that Problem 1 can be solved by a plain combination of B-treesand Patricia tries for internal nodes. This takes O( pB logB k + occB ) disk accesses for Pre�xSearch(P ), and O(mB logB k) disk accesses for inserting or deleting a string of length m in �.Although interesting as p=B < 1 in practical cases, this combination does not achieve theoptimal theoretical bounds as shown below. As far as Problem 2 is concerned, this combina-tion takes O( pB logB N+ occB ) disk accesses for Substring Search(P ), and O((mB +1)m logB N)disk accesses for inserting or deleting (all the su�xes of) a string of length m in �. Noticethat the latter bound is quadratic in m because a string insertion/deletion might requireto entirely rescan all of its su�xes from the beginning, thus examining overall �(m2) char-acters. Another interesting solution is given by a single Patricia trie built on the wholeset of su�xes of �'s strings [13]. This achieves O( hpp + logpN) disk accesses for SubstringSearch(P ), where h � N is Patricia trie's height. Inserting or deleting a string in � costsat least as searching for all of its su�xes individually. These two solutions are practicallyattractive but do not guarantee provably good performance in the worst case.Our main contribution is to show that the data structure resulting from the plaincombination of B-trees and Patricia tries can be further re�ned and made more e�ectiveby adding extra pointers and proving new structural properties that avoid the drawbackspreviously mentioned. By means of String B-trees, we achieve the following results:Problem 1:� Pre�x Search(P ) takes O(p+occB + logB k) worst-case disk accesses, where p = jP j.� Range Query(K 0; K 00) takes O(k0+k00+occB +logB k) worst-case disk accesses, where k0 =jK 0j and k00 = jK 00j.� Inserting or deleting a string of lengthm in string set � takes O(mB+logB k) worst-casedisk accesses.� The space usage is �( kB ) disk pages, while the space occupied by string set � is �(NB )disk pages.

3
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Problem 2:� Substring Search(P ) takes O(p+occB + logB N) worst-case disk accesses, where p = jP j.� Inserting or deleting a string of length m in string set � takes O(m logB(N + m))worst-case disk accesses.� The space used by both the String B-tree and string set � is �(NB ) disk pages.The space usage of String B-trees in Problem 1 is proportional to the number k of�'s strings rather than to their total length N , because we represent the strings by theirlogical pointers. It turns out that the space occupied is asymptotically optimal in bothProblems 1 and 2. The constants hidden in the big-Oh notation are small. Additionally,the String B-tree operations take asymptotically optimal CPU time, i.e., O(Bd) time whenour algorithms read or write d disk pages, and they only need to keep a constant numberof disk pages loaded in main memory at any time.1.1 Further Results in External MemoryLet us examine the parameterized pattern matching problem, introduced by [7] for identify-ing duplication in a software system. The problem consists of �nding the program fragmentsthat are identical except for a systematic renaming of their parameters. In this case, theprogram fragments are represented by some parameterized strings, called p-strings. A suf-�x tree generalization, called p-su�x tree [7], allows us to search for p-strings online andto identify p-string duplications by ignoring parameter renaming. P-su�x trees and theother p-string algorithms [4, 26, 30] are designed to work in main memory and have todeal with the dynamic nature of parameter renaming. We can formulate Problems 1 and 2for p-strings and then apply String B-trees to them by means of some minor algorithmicmodi�cations. Consequently, the aforementioned theoretical results regarding strings canbe extended to p-strings. Our search bound improves the one obtained in [7, 30] for largealphabets, even when the p-string set is static. We refer the interested reader to Section 6.1for further details.Let us now examine the databases that treat variable-length records (not necessarilytextual databases), and in particular, their compound attribute organization [31] and [29,Sect 6.5], in which the lexicographic order of some records' combinations is properly main-tained. An example of this is indexing an employee database according to the stringobtained by concatenating employee's name, o�ce and phone number. Pre�x B-trees [9]are the most widely-used tool in managing compound attribute organizations. However,since they work by copying some parts of the key strings, they cause data duplication andspace overhead. Conversely, String B-trees fully exploit the lexicographic order and takeadvantage of the pre�x shared by any two (consecutive) key strings. As a consequence, wecan use String B-trees to support this organization without having to copy the attributes inthe data structure because we can interpret each variable-length record as a text string ofarbitrary length and so use our solution to Problem 1. The space usage of String B-trees isproportional to the number of key strings and not to their total length; thus, String B-treesachieve much better worst-case space saving with respect to pre�x B-trees. We refer theinterested reader to Section 6.2 for more details.4



www.manaraa.com

1.2 Results in Main Memory (RAM model)Fixing B = O(1), the String B-tree can be seen as an augmented 2{3-tree [2] that allowsus to obtain some interesting results in the standard RAM model, due to its balanced treetopology.� We improve the online search in su�x trees when they store a dynamic set of stringswhose characters are taken from a large alphabet [3, 25]. Speci�cally, we reduce the search-ing time from O(p logN + occ) to O(p+ logN + occ) by using our solution to Problem 2.This was previously achieved by [33] only for a static string set by means of su�x arrays.� We implement dynamic su�x arrays [17] in linear O(N) space without using thenaming technique of [27]. We still obtain an alphabet-independent search and the updatesrun within the same time bounds as in [17]. We refer the reader to Section 6.3.�We obtain a tight bound, i.e., �(N+k log k), in the comparison model for the problemof sorting �'s strings online. We start out with an empty String B-tree and then insert �'sstrings one at a time by means of the procedure used in Problem 1. This approach requiresa total of O(N + k log k) comparisons. The lower bound 
(N + k log k) holds becausewe must examine all of the N input characters and output a permutation of k strings.A straightforward use of compacted tries [29] would require O(N + k2 log k) comparisonsin the worst case. A recent optimal approach based upon ternary search trees has beendescribed in [11].The rest of this paper is organized as follows. In Section 2, we introduce String B-treesand discuss their main properties and operations. We give a formal, detailed description ofthem in Sections 3 and 4. In Section 5, we review and discuss some previous work on themost important data structures for manipulating external-memory text collections with theaim of clarifying String B-trees' main properties and advantages. In Section 6, we studythe applicability of String B-trees. We conclude the paper with some open problems andsome suggestions for further research.2 The String B-Tree Data StructureWe assume that each string in the input set � is stored in a contiguous sequence of diskpages and represent the strings by their logical pointers to the external-memory addresses oftheir �rst character, as shown in Figure 1. We can therefore locate the disk page containingthe i-th character of a string by performing a constant number of simple arithmeticaloperations on its logical pointer. When managing keys in the form of logical pointersto arbitrarily-long strings we are faced with two major di�culties that are not usuallyencountered in other �elds, such as computational geometry [23]:� We can group �(B) logical pointers to strings into a single disk page but, unfortu-nately, if we only read this page, we are not able to retrieve strings' characters.� We can compare any two strings character-by-character but this is extremely inef-�cient if repeated several times because its worst-case cost is proportional to thelength of the two strings involved each time. We call this problem rescanning , dueto the fact that the same input characters are (re)examined several times.5
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∆ = { ace, aid, atlas, atom, attenuate, by, bye, car, cod, dog, fit, lid, patent, sun, zoo }
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Figure 1. An example of storing string set � in external memory. The strings are not put inany particular order. Disk is represented by a linear array with disk page size B = 8. The logicalpointers to �'s strings are their starting positions in external memory. For example, 48 is thelogical pointer to string `�t' and 14 is the logical pointer to su�x `nuate'. The black boxes in thedisk pages denote special endmarkers that prevent two su�xes of �'s strings from being equal.Consequently, we believe that a proper organization of the strings and a method for avoidingrescanning are crucial to solve Problems 1 and 2 with provably good performance in theworst case, and we show how to do this in the rest of this section.We begin by describing a B-tree-like data structure that helps us to solve Problem 1by handling keys which are logical pointers to arbitrarily-long strings. Since the worst-case bounds obtained are not the ones claimed in the introduction, we perform anotherstep and transform the B-tree-like data structure into a simpli�ed version of the String B-tree by properly organizing the logical pointers inside its nodes by means of Patricia tries.This combination is described in Section 2.1, where we introduce new structural propertiesthat allow us to design a search procedure which avoids the rescanning problem previouslymentioned, thus showing how to solve Problem 1 e�ciently. Finally, we show in Section 2.2how to obtain the �nal version of the String B-tree for solving Problem 2 by adding someextra pointers and proving further properties that are crucial to achieve our bounds.2.1 Pre�x Search and Range Query (Problem 1)We start out by describing a B-tree-like data structure which gives us an initial, roughsolution to Problem 1. As previously stated, we represent strings by their logical pointers.The input is a string set � whose total number of characters is N . We denote by K =fK1; : : : ; Kkg the set of �'s strings in lexicographic order, denoted by �L. We assumethat strings K1; : : : ; Kk reside in the B-tree leaves, which are linked together to form abidirectional list, and only some strings are copied in the internal nodes|we obtain theso-called B+-tree [15]. We denote the ordered string set associated with a node � by S�,where S� � K, and denote S�'s leftmost string by L(�) and S�'s rightmost string by R(�).We store each node � in a single disk page and put a constraint on the number of its strings:6
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σ1 σ σg2Figure 2. The logical layout of a B-tree internal node � having g = n(�) children.b � jS�j � 2b, where b = �(B) is an even integer properly chosen to let a single node �tinto a disk page. We allow the root to contain less than b strings.We distribute the strings among the B-tree nodes as follows: We partition K intogroups of b consecutive strings each, except for the last group which can contain from bto 2b strings. We map each group to a leaf, say �, and form its string set S� in such away that we can retrieve K by scanning the leaves rightwards and by concatenating theirstring sets. Each internal node � has n(�) children �1; : : : ; �n(�) and its ordered stringset S� = fL(�1); R(�1); : : : ; L(�n(�)); R(�n(�))g is obtained by copying the leftmost andrightmost strings contained in its children, as shown in Figure 2. (Actually, we could onlycopy one string from each child but this would make our algorithms more complex.) Sincen(�) = jS�j2 , each node has from b2 to b children except for the root and the leaves, and theresulting number of B-tree levels is H = O(logb=2 k) = O(logB k). We call H its height, andnumber these levels by starting from the root (level 1). See Figure 3 for an example.Problem 1 can be solved by using the B-tree-like layout described above. We onlydiscuss the Pre�x Search(P ) operation in detail. It is based on an interesting observationintroduced by Manber and Myers [33]: the strings having pre�x P occupy a contiguous partof K. In the example described in Section 1, the strings having pre�x P = `at' all rangefrom string `atlas' to string `attenuate'. Consequently, we only have to retrieve K's leftmostand rightmost strings whose pre�x is P because the rest of the strings to be retrieved liein K between these two strings. In our case, these strings occupy a contiguous sequenceof B-tree leaves|i.e., the ones storing the logical pointers 35, 5 and 10 in Figure 3. Inanother observation of theirs, Manber and Myers identify the leftmost string whose pre�xis P : this string is adjacent to P 's position in K according to the lexicographic order �L. Inthe example given in Section 1, if P = `at', its position in K is between strings `aid' and`atlas'; in fact, `atlas' is the leftmost string we are looking for. A symmetrical observationholds for the rightmost string and so we do not discuss it here. Since K is a dynamic setpartitioned among the B-tree leaves, we can use Manber and Myers' observations in ourB-tree-like layout. We therefore answer Pre�x Search(P ) by focusing on the retrieval ofP 's position in K. We represent P 's position in the whole set K by means of a pair (�; j),7
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Figure 3. An example of B-tree-like layout (upper part) and its input string set � (lower part).Set K = f`ace', `aid', `atlas', `atom', `attenuate', `by', `bye', `car', `cod', `dog', `�t', `lid', `patent',`sun', `zoo'g is obtained by sorting �. The strings in K are stored in the B-tree leaves by meansof their logical pointers 56, 1, 35, 5, 10, : : :, 31.such that � is the leaf containing this position and j � 1 is the number of S� 's stringslexicographically smaller than P , where 1 � j � jS� j+1. We also say that j is P 's positionin set S� . In our example for P = `at', � is the leftmost leaf in Figure 3 and j = 3, whereS� is made up of the strings pointed by 56, 1, 35 and 5.In Figure 4, we illustrate the algorithmic scheme for identifying pair (�; j), where wedenote the procedure that determines P 's position in a set S� by PT-Search(P , S�). Webegin by checking the two trivial cases in which P is either smaller than any other stringin K (Step (1)) or larger than any other string in K (Step (2)). If both checks turn out tobe false, we start out from � = root in Step (3) and perform a downward B-tree traversalby maintaining the invariant : L(�) <L P �L R(�) for each node � visited (Steps (4){(8)). In visiting �, we load its disk page and apply procedure PT-Search in order to �ndP 's position j in string set S�, namely, we determine its two adjacent strings verifyingcKj�1 <L P �L cKj. If � is a leaf, we stop the traversal. If � is an internal node, we havethe following two cases:(1) If strings cKj�1 and cKj belong to two distinct children of �, say cKj�1 = R(�0) and8
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(1) if P �L K1 then � := leftmost leaf; j := 1; return(�; j);(2) if P >L Kk then � := rightmost leaf; j := jS� j+ 1; return(�; j);(3) � := root;while true do /* Invariant: L(�) <L P �L R(�) */(4) Load �'s page and let S� = fcK1; : : : ;cK2n(�)g;(5) j := PT-Search(P , S�); /* cKj�1 <L P �L cKj */(6) if � is a leaf then � := �; return(�; j);(7) if cKj = L(�), for a child � of � then� := �'s leftmost descending leaf; j := 1; return(�; j);(8) if cKj = R(�), for a child � of � then � := �;endwhileFigure 4. The pseudocode for identifying pair (�; j) that represents P 's position in K.cKj = L(�) for two children �0 and �, then the two strings are adjacent in the wholeset K due to B-tree's layout. This determines P 's position in K. We thereforechoose � as the leftmost B-tree leaf that descends from � and conclude that P isin the �rst position in S� because L(�) = L(�) = cKj.(2) If both cKj�1 and cKj belong to the same child, say cKj�1 = L(�) and cKj = R(�) fora child �, then we set � := � in order to maintain the invariant and continue theB-tree traversal on the next level recursively.At the end of this traversal, we �nd the pair (�L; jL) that represents the position of K'sleftmost string having pre�x P . In the same way, we can determine the pair (�R; jR)that represents the position of K's rightmost string having pre�x P . We go on to answerPre�x Search(P ) by scanning the linked sequence of B-tree leaves delimited by �L and �R(inclusive) and by listing all the strings from the (jL)-th string in S�L up to the (jR� 1)-thstring in S�R .The search described so far is similar to the one used for regular B-trees, especially if weimplement procedure PT-Search by performing a binary search of P in set S� and examiningO(log2 jS�j) = O(log2B) strings. While this binary search does not cost anything morein regular B-trees, in this case, once we load �'s disk page, we have to pay O( pB + 1)disk accesses to load each string examined and compare it to P because we represent thestrings by their logical pointers. Consequently, a call to PT-Search takes O(( pB + 1) log2B)disk accesses in the worst case. It follows that this simple approach for Pre�x Search callsPT-Search H times and thus takes a total of O(H ( pB + 1) log2B) = O(( pB + 1) log2 k)disk accesses plus O(occB ) disk accesses for retrieving the strings delimited by leaves �Land �R. This bound is the same as for the su�x array search without any auxiliary datastructures [33], and worse than the one we claimed in the introduction. Nevertheless, theB-tree-like layout gives us a good starting point for �nding an e�cient implementation ofPre�x Search.We now carry out another step in the B-tree-like layout by plugging a Patricia trie [36]into each B-tree node in order to organize its strings properly and support searches that9
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Figure 5. The number labeling an internal node u denotes the length of the string spelled outby the downward path from the root to u.compare only one string of set S� in the worst-case rather than the log2 jS�j ones requiredfor a binary search. We call the resulting data structure the simpli�ed String B-tree. 2Let us examine a node � in the String B-tree and the Patricia trie PT� plugged intoit. We can de�ne PT� in two steps: (1) We build a compacted trie [29] on S�'s strings(see Figure 5, left). (2) We label each compacted trie node by the length of the substringstored into it and we replace each substring labeling an arc by its �rst character only,called branching character (see Figure 5, right). On one hand, the Patricia trie losessome information with respect to the compacted trie because we delete all the charactersin each arc label except the branching character. On the other hand, the Patricia triehas two important features that we discuss below: (i) it �ts �(B) strings into one B-tree node independently of their length; (ii) it allows to perform lexicographic searchesby branching out from a node without further disk accesses. It is worth noting that acompacted trie might satisfy feature (i) by representing the substrings labeling its arcsvia pairs of pointers to their external-memory positions; however, feature (ii) would be nolonger satis�ed because of the pairs of pointers and this would increase the number of diskaccesses taken by the search operation.We now show how to exploit some new properties of Patricia tries for implementing thePT-Search procedure in two phases. Due to its features, hereafter we will call this searchprocedure blind search:2We were not able to �nd any source in the research literature referring to a data structure based onB-trees and Patricia tries for internal nodes, and resembling the simpli�ed String B-tree. Probably someprogrammers know such a data structure. Nonetheless, we highlight new structural properties that arecrucial to achieve optimal worst-case bounds for Problem 1.10
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Figure 6. (Left) An example of the �rst phase in blind search. The marked arcs are the traversedones. (Right) An example of the second phase in blind search. The hit node is circled, and themarked arcs are the ones traversed to �nd P 's position in S�.� In the �rst phase, we trace a downward path in PT� to locate a leaf l, which does notnecessarily identify P 's position in S�. We start out from the root and only comparesome of P 's characters with the branching characters found in the arcs traversed untilwe either reach a leaf, say l, or no further branching is possible. In the latter case,we choose l to be a descending leaf from the last node traversed.� In the second phase, we load l's string and compare it to P in order to determinetheir common pre�x. We prove a useful property (Lemma 3.5): Leaf l stores oneof S�'s strings that share the longest common pre�x with P . We use this commonpre�x in two ways: we �rst determine l's shallowest ancestor (the hit node) whoselabel is an integer equal to, or greater than, the common pre�x length of l's stringand P . We then �nd P 's position by using P 's mismatching character to choose aproper Patricia trie leaf descending from the hit node.We give an example of PT-Search(P , S�) in Figure 6, where P = `bcbabcba'. In partic-ular, Figure 6(left) depicts the �rst phase in which l represents the rightmost leaf. It isworth noting that l does not identify P 's position in S� because we do not compare P 'smismatching character (i.e., P [4] = `a') and thus we induce a \mistake." We determineP 's correct position in the second phase, illustrated in Figure 6(right). We start out bydetermining the common pre�x of l's string and P (i.e., `bcb') and then we �nd l's shal-lowest ancestor (the hit node) whose label is greater than j`bcb'j = 3. After that, we usemismatching character P [4] = `a' to identify P 's correct position j = 4 by traversing the11
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marked arcs in Figure 6(right). It is worth noting that we only load the disk pages thatstore pre�x `bcbc' in l's string because the Patricia trie is stored in �'s disk page, thusmaking the branching characters available. In this way, we do not take more than O( pB +1)disk accesses to execute PT-Search.It is now clear that putting Patricia tries and the previously described B-tree layouttogether, we avoid the binary search in the nodes traversed and thus reduce the overall com-plexity from O(( pB +1) log2 k) to O(( pB +1)H) = O(( pB +1) logB k) disk accesses. However,this bound is yet not satisfactory and does not match the one claimed in the introduction.The reason is that at each visited node we are rescanning P from the beginning. We avoidrescanning and obtain the �nal optimal bound by designing an improved PT-Search proce-dure that derives directly from the previous one but exploits the String B-tree layout andthe Patricia trie properties better. It takes three input parameters (P;S�; `), where theadditional input parameter ` satis�es the property that there is a string in S� whose �rst `characters are equal to P 's. PT-Search(P;S�; `) returns pair (j; lcp), where j is P 's positionin S� (as before) and the additional output parameter lcp is the common pre�x length ofl's string and P computed in the blind search. A comment is in order at this point. We canshow that lcp � ` (see Lemma 3.6) and can therefore design a fast incremental PT-Searchthat compares P to l's string by only loading and examining the characters in positions` + 1; : : : ; lcp + 1. As a result, PT-Search now only takes d lcp�`B e + 1 disk accesses (seeTheorem 3.8).We now go back to the algorithmic scheme for �nding P 's position in the whole setK. The above considerations allow us to modify the pseudocode in Figure 4 by addinginstruction ` := 0 to Step (3) and by replacing Step (5) with:(5) (j; `) := PT-Search(P , S�, `)We are now ready to analyze Pre�x Search's complexity. As previously mentioned,we have to search for K's leftmost and rightmost strings having pre�x P by identifyingthe pairs (�L; jL) and (�R; jR). We do this by means of our modi�ed pseudocode whichtraverses a sequence of nodes, say �1; �2; : : : ; �H . The cost of examining �i is dominatedby Step (5), which takes di = d `i�`i�1B e + 1 � `i�`i�1B + O(1) disk accesses because weexecute PT-Search with ` = `i�1 to compute lcp = `i. The total cost of this traversalis PHi=1 di = `H�`0B + O(H) = O( pB + logB k) disk accesses. We use the fact that it is atelescopic sum, where `0 = 0, `H � p and H = O(logB k). Subsequently, we retrieve K'sstrings having pre�x P by examining the leaves of the String B-tree delimited by �L and�R in O(occB ) disk accesses. The total cost of Pre�x Search(P ) is therefore O(p+occB + logB k)disk accesses. We refer the reader to Section 4.1 for a detailed, formal discussion of thisresult.The simpli�ed String B-tree layout has the considerable advantage of being dynamicwithout requiring any contiguous space. A new string K can be inserted into � like regularB-trees, that is, by inserting K into K in lexicographic order. We identify K's position inK by computing its pair (�; j). We then insert K into string set S� at position j. If L(�)or R(�) change in � , then we extend the change to � 's ancestors. After that, if � gets full(i.e., it contains more than 2b strings), we say that a split occurs. We create a new leaf �and install it as an adjacent sibling of � . We then split string set S� into two roughly equalparts of at least b strings each, in order to obtain � 's and �'s new string sets. We copy12
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strings L(�); R(�); L(�) and R(�) in their parent node in order to replace the old stringsL(�) and R(�). If � 's parent also gets full because it has two more strings, we split it. Inthe worst case, the splitting can extend up to the String B-tree's root and the resultingString B-tree's height can increase by one.The deletion of a string from � is similar to its insertion, except that we are faced witha leaf that gets half-full because it has less than b strings. In this case, we say that a mergeoccurs and we join this leaf and an adjacent sibling leaf together: we merge their string setsand propagate the merging to their ancestors. In the worst case, the merging can extendup to the String B-tree's root and so the height can decrease by one.The cost for inserting or deleting a string is given by its searching cost plus the O(logB k)rebalancing cost. We can prove the following result:Theorem 2.1 (Problem 1). Let � be a set of k strings whose total length is N . Pre-�x Search(P ) takes O(p+occB + logB k) worst-case disk accesses, where p = jP j. RangeQuery(K 0; K 00) takes O(k0+k00+occB + logB k) worst-case disk accesses, where k0 = jK 0j andk00 = jK 00j. Inserting or deleting a string of length m takes O(mB + logB k) worst-case diskaccesses. The space occupied by the String B-tree built on � is �( kB ) disk pages and thespace required by string set � is �(NB ) disk pages.2.2 Substring Search (Problem 2)We now show how solve Problem 2, in which the input is a string set � = f�1; : : : ; �kgwhose total number of characters is N = Pkh=1 j�hj. We denote the su�x set by SUF (�) =f�[i; j�j] : 1 � i � j�j and � 2 �g, which therefore contains N lexicographically orderedsu�xes. As previously mentioned, Problem 2 concerns with a more powerful SubstringSearch(P ) operation that searches for P 's occurrences in �'s strings, i.e., it �nds all thelength-p substrings equal to P . Since each of these occurrences corresponds to a su�xwhose pre�x is P|i.e., �[i; i+p�1] = P if and only if P is a pre�x of �[i; j�j] 2 SUF (�)|our problem is actually to retrieve all of SUF (�)'s strings having pre�x P . We thereforeturn a Substring Search(P ) on string set � into a Pre�x Search(P ) on su�x set SUF (�).For example, let us examine the String B-tree shown in Figure 7 and search for P = `at'.We have to retrieve occ = 5 occurrences: `atlas',`atom', `attenuate' and `patent'. Thesu�xes having pre�x P and corresponding to these occurrences have their logical pointers(i.e., 16, 25, 35, 5 and 10) stored in a contiguous sequence of leaves in Figure 7. As a result,we can set the string set K = SUF (�) and its size k = N and execute Pre�x Search(P ).The total cost of answering Substring Search(P ) is therefore O(p+occB + logB N) worst-casedisk accesses by Theorem 2.1.Although this transformation notably simpli�es the search operation, it introduces someupdating problems that represent the most challenging part of solving Problem 2. Wewish to point out that the insertion of an individual string Y into string set �, wherem = jY j, consists of inserting all of its m su�xes into su�x set SUF (�) in lexicographicorder. Consequently, we could consider inserting one su�x at a time, say Y [i;m], withdi = O( jY [i;m]jB +logB N) disk accesses by Theorem 2.1 with K = SUF (�) and k = N . Thetotal insertion cost would bePmi=1 di = O(m (mB+1)+m logB(N+m)) disk accesses and thisis worse than the O(m logB(N+m)) worst-case bound we claimed in the introduction. The13
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Figure 7. An example of an String B-tree layout for solving Problem 2 on string set � =f`aid', `atlas', `atom', `attenuate', `car', `patent', `zoo'g. Here, b = 4 and K = f`aid',`ar',`as', : : :,`uate',`zoo' g.problem here is that we treat the m inserted su�xes like arbitrary strings and this causesthe rescanning problem. The solution lies in the fact that they are all part of the samestring. Consequently, we augment the simpli�ed String B-tree by introducing two types ofauxiliary pointers which help us to avoid rescanning in the updating process: One type isthe standard parent pointer de�ned for each node; the other is the succ pointer de�ned foreach string in SUF (�) as follows. The succ pointer for �[i; j�j] 2 SUF (�) leads to StringB-tree's leaf containing �[i+ 1; j�j]. If i = j�j, then we let succ be a self-loop pointer to itsown leaf, i.e., the leaf containing �[i; j�j]. We only describe the logic behind Y 's insertionhere because its deletion is simpler, and treat the subject formally in Sections 4.2{4.5.We insert Y 's su�xes into the String B-tree storing SUF (�) at the beginning, goingfrom the longest to the shortest one. We proceed by induction on i = 1; 2; : : : ; m and makesure that we satisfy the following two conditions after Y [i;m]'s insertion:(a) Su�xes Y [j;m] are stored in the String B-tree, for all 1 � j � i, and Y [i;m] sharesits �rst hi characters with one of its adjacent strings in the String B-tree.(b) All the succ pointers are correctly set for the strings in the String B-tree except forY [i;m]. This means that succ(Y [i;m]) is the only dangling pointer, unless i = m,in which case it is a self-loop pointer to its own leaf.We refer the reader to the self-explanatory pseudocode illustrated in Figure 8 for furtherdetails. We assume that Conditions (a) and (b) are satis�ed for i � 1. By executing14
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procedure SB-Insert(Y );m := jY j;for i = 1; 2; : : : ;m do(1) �nd the leaf �i that contains Y [i;m]'s position;(2) insert Y [i;m] into �i;(3) if a split occurs then rebalance the String B-tree;redirect some succ and parent pointers;(4) succ(Y [i� 1;m]) := leaf containing Y [i;m];(5) if i = m then succ(Y [i;m]) := succ(Y [i� 1;m]); /* self-loop pointer */endfor Figure 8. The insertion algorithm.Steps (1){(5), we make succ(Y [i;m]) be the new dangling pointer and satisfy Conditions (a)and (b) for i. We therefore go on by setting i := i + 1 and repeat the insertion for thenext su�x of Y . The two main problems arising in the implementation of the insertionprocedure are:� Step (1): We have to �nd Y [i;m]'s position without any rescanning.� Step (3): We have to rebalance the updated String B-tree by redirecting some succand parent pointers e�ciently.We now examine the problem of �nding Y [i;m]'s position (Step (1)). For i = 1, we �ndY [1; m]'s position by traversing the String B-tree analogously to Pre�x Search(Y [1; m]). Wetake a di�erent approach for the rest of Y 's su�xes (i > 1) to avoid rescanning and induc-tively exploit Conditions (a) and (b) for i� 1. When �nding Y [i;m]'s position, instead ofstarting out from the root, we traverse the String B-tree from the last leaf visited in theString B-tree (i.e., the one containing Y [i � 1; m]). Since Y [i � 1; m] = Y [i � 1]Y [i;m],we would be tempted to use the succ(Y [i � 1; m]) pointer to identify Y [i;m]'s positiondirectly but cannot because the pointer is dangling by Condition (b). However, we knowthat Y [i � 1; m] shares its �rst hi�1 characters with one of its adjacent strings by Condi-tion (a). We therefore take the succ-pointer of this adjacent string, which is correctly setby Condition (b), and reach a leaf which veri�es the following property: it contains a stringthat shares the �rst maxf0; hi�1 � 1g characters with Y [i;m] (Lemma 4.8). We continuethe insertion by performing an upward and downward String B-tree traversal leading toleaf �i, which contains Y [i;m]'s position. Since we can prove that hi � maxf0; hi�1 � 1g(Corollary 4.9), our algorithm avoids rescanning by only examining Y 's characters in posi-tions i +maxf0; hi�1 � 1g; : : : ; i + hi. We show that this \double" String B-tree traversalcorrectly identi�es �i with hi�maxf0;hi�1�1gB +O(logB(N +m)) disk accesses (Lemma 4.10).After Y [i;m]'s insertion in its leaf, we have to rebalance the String B-tree if a splitoccurs (Step (3)). A straightforward handling of parent and succ pointers would takeO(B logB(N +m)) worst-case disk accesses per inserted su�x because: (i) each node splitoperation can redirect �(B) of these pointers from possibly distinct nodes; (ii) there can15
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be H = O(logB(N +m)) split operations per inserted su�x. In Section 4.5, we show howto obtain an O(logB(N +m)) amortized cost per su�x and then devise a general strategybased on node clusters to achieve O(logB(N +m)) in the worst case.As far as the worst-case complexity of Y [i;m]'s insertion is concerned, we take di =hi�maxf0;hi�1�1gB +O(logB(N +m)) disk accesses, where h0 = 0 and hi � m. As a result, atotal of Pmi=1 di = O(mB +m logB(N +m)) = O(m logB(N +m)) disk accesses are requiredfor inserting Y into �. It is worth noting that we achieve the same worst-case performanceas for the insertion of m integer keys into a regular B-tree; but additionally, our boundis proportional to the number of inserted su�xes rather than their total length, whichis bounded by �(m2). We give a formal, detailed discussion of the update operations inSections 4.2{4.5 and prove the following result:Theorem 2.2 (Problem 2). Let � be a set of strings whose total length is N . SubstringSearch(P ) takes O(p+occB + logB N) worst-case disk accesses, where p = jP j. Inserting astring of length m in � or deleting it takes O(m logB(N + m)) worst-case disk accesses.The space occupied by both the String B-tree and the string set � amounts to �(NB ) diskpages.We begin our formal discussion with a technical description of the Patricia trie datastructure and its operations (Section 3). We then give a technical description of the StringB-tree data structure and discuss its operations in detail (Section 4).3 A Technical Description of Patricia TriesWe let � denote an ordered alphabet and �L denote the lexicographic order among thestrings whose characters are taken from �. Given two strings X and Y that are noteach other's pre�x, we de�ne lcp(X; Y ) to be their longest common pre�x length, i.e.,lcp(X; Y ) = k i� X[1; k] = Y [1; k] and X[k+1] 6= Y [k+1]. This de�nition can be extendedto the case in which X is Y 's pre�x (or vice versa) by appending a special endmarker toboth strings. The following fact illustrates the relationship between the lexicographic order�L and the lcp value:Fact 3.1. For any strings X1; X2; Y such that either X1 �L X2 �L Y or Y �L X2 �L X1:lcp(X1; Y ) � lcp(X2; Y ).Let us now consider an ordered string set S = fX1; : : : ; Xdg and assume that anytwo strings in S are not each other's pre�x. We use the shorthand max lcp(Y;S) toindicate the maximum among the lcp-values of Y and S's strings, i.e., max lcp(Y;S) =maxX2S lcp(Y;X). We say that an integer j is Y 's position in set S if exactly (j � 1)strings in S are lexicographically smaller than Y , where 1 � j � d+ 1. The following factillustrates the relationship between the max lcp value and S's strings near Y 's position:Fact 3.2. If j is Y 's position in S, thenmax lcp(Y;S) = 8><>: lcp(Y;X1) if j = 1maxflcp(Xj�1; Y ); lcp(Y;Xj)g if 2 � j � dlcp(Xd; Y ) if j = d+ 1.16
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We introduce a de�nition of Patricia tries that is slightly di�erent from the one in [36],but it is suitable for our purposes. A Patricia trie PTS built on S satis�es the followingconditions (see Figure 5):(1) Each arc is labeled by a branching character taken from � and each internal nodehas at least two outgoing arcs labeled with di�erent characters. The arcs are orderedaccording to their branching characters and only the root can have one child.(2) There is a distinct leaf v associated with each string in S. We denote this string byW (v). Leaf v also stores its string length len(v) = jW (v)j.(3) If node u is the lowest common ancestor of two leaves l and f , then it is labeledby integer len(u) = lcp(W (l);W (f)) (and we let len(root) = 0). Speci�cally,leaf l (resp., f) descends from u's outgoing arc whose branching character is the(len(u) + 1)-st character in string W (l) (resp., W (f)).Let us now consider an internal node u in PTS and denote u's parent by parent(u); we letf be one of u's descending leaves. Property (3) suggests that we denote the string implicitlystored in node u by W (u), that is, W (u) is equal to the �rst len(u) characters of W (f).Arc (parent(u); u) implicitly corresponds to a substring of length (len(u)� len(parent(u)))having its �rst character equal to the branching character W (f)[len(parent(u)) + 1] andthe other characters equal to W (f)'s characters in positions len(parent(u))+2; : : : ; len(u).We can now introduce the de�nition of hit node that is the analog of the extended locusnotion in compacted tries [34]:De�nition 3.3. The hit node for a pair (f; `), such that f is a leaf and 0 < ` � len(f),is f 's ancestor u satisfying: len(u) � ` > len(parent(u)). If ` = 0, the hit node is the root.Patricia tries do not take up very much space: PTS has d leaves and no more than dinternal nodes because only the root can have one child. Therefore, the total space requiredis O(d) even if the total length of S's strings can be much more than d.3.1 Blind Searching in Patricia Tries: PT-Search procedureWe propose a search method that makes use of Patricia trie PTS to e�ciently retrieve theposition of an arbitrary string P in an ordered set S. We stated the intuition and logicbehind it in Section 2.1 (PT-Search procedure). PT-Search's input is a triplet (P;S; `),where ` � lcp(P;X) for a string X 2 S. The output is a pair (j; lcp) in which j is P 'sposition in S and lcp = max lcp(P;S). Let us introduce a special character $ smaller thanany other character in � and let us assume without any loss in generality that P [i] = $when i > jP j. We implicitly use the following fact to identify S's leftmost string whosepre�x is P (we can also determine its rightmost one by letting $ be larger than any otheralphabet character).Fact 3.4. There is a mismatch between P and any other string and, if any of S's stringshave pre�x P [1; jP j], then P 's position in S is to their immediate left.There are two main phases in our procedure:17



www.manaraa.com

First Phase: Downward Traversal. We locate a leaf, say l, by traversing PTS down-wards. We start out from its root and compare P 's characters with the branching charactersof the arcs traversed. If u is the currently visited node and has an outgoing arc (u; v) whosebranching character is equal to P [len(u) + 1], then we move from u to its child v and setu := v. We go on like this until we either reach a leaf, which is l, or we cannot branch anyfurther and then choose l as one of u's descending leaves. Leaf l stores one of S's stringsthat satisfy the following useful property:Lemma 3.5. If we let lcp denote lcp(W (l); P ), then lcp = max lcp(P;S).Proof: By way of contradiction, we assume that there is another string X in S, suchthat X 6= W (l) and lcp(X;P ) > lcp, and show that we cannot reach leaf l. We havelcp(W (l); X) = lcp. Let u denote the lowest common ancestor of l and the leaf storingX. From Property (3) of the Patricia tries, it follows that len(u) = lcp(W (l); X) andP [len(u)+1] = X[len(u)+1] 6= W (l)[len(u)+1] (because lcp(X;P ) > lcp). Consequently,W (u) is a proper pre�x of P and we can branch further out from u to its child v by matchingP [len(u) + 1] with branching character X[len(u) + 1]. Since the branching character isdi�erent fromW (l)[len(u)+1], we obtain the contradiction that v is not one of l's ancestorsand therefore l cannot be reached at the end of the downward traversal.It is worth noting that we retrieve leaf l without performing any disk accesses becausewe only use the branching characters stored in PTS 's disk page. Furthermore, l's positiondoes not necessarily correspond to P 's position in S (see Figure 6(left)).Second Phase: Retrieval of P 's position in S. We compute lcp = lcp(W (l); P ) andthe two mismatching characters c = P [lcp+1] and c0 = W (l)[lcp+1] (which are well-de�nedby Fact 3.4) by exploiting the following result:Lemma 3.6. lcp � `.Proof: We know that there is a string X 2 S, such that lcp(P;X) � `. Moreover,max lcp(P;S) � lcp(P;X) by de�nition. Since lcp = max lcp(P;S) by Lemma 3.5, wededuce that lcp � `.From Lemma 3.6, we deduce that the �rst ` characters in P and W (l) are de�nitelyequal. We therefore compute lcp; c and c0 by starting out from the (`+1)-st characters in Pand W (l) rather than from their beginning . Consequently, we only retrieve d lcp�`B e+1 diskpages, namely the ones storing substring W (l)[`+1; lcp+1]. We then detect the hit node,say u, for the pair (l; lcp) by traversing the Patricia trie upwards and �nd P 's position jin S by using the property that all of S's strings having pre�x P [1; lcp] are stored in u'sdescending leaves.Lemma 3.7. We can compute P 's position j without any further disk accesses.
18
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Proof: We already have lcp; c and c0 in main memory. We handle two cases on hit node uand derive their correctness from the Patricia trie properties:(1) Case len(u) = lcp. We let c1; : : : ; ck be the branching characters in u's outgoingarcs. None of them match character c. If c <L c1, then we move to u's leftmost descendingleaf z and let j � 1 be the number of leaves to z's left (z excluded). If ck <L c, then wemove to u's rightmost descending leaf z and let j � 1 be the number of leaves to z's left(z included). In all other cases, we determine two branching characters, say ci and ci+1,such that ci <L c <L ci+1. We move to the leftmost leaf z that is reachable through thearc labeled ci+1 and let j � 1 be the number of leaves to z's left (z excluded).(2) Case len(u) > lcp. We can infer that all the strings stored in u's descending leavesshare the same pre�x of length len(u) and we know that len(u) > lcp > len(parent(u)).The (lcp+1)-st character of them all is equal to c0 because l is one of u's descending leaves.If c <L c0, then we move to u's leftmost descending leaf z and let j � 1 be the number ofleaves to z's left (z excluded). If c0 <L c, then we move to u's rightmost descending leaf zand let j � 1 be the number of leaves to z's left (z included).It is worth noting that the computation of lcp; c and c0 is the only expensive step in thesecond phase. We can therefore state the following, basic result:Theorem 3.8. Let us assume that Patricia trie PTS is already in main memory and let` be a non-negative integer such that ` � lcp(X;P ) for a string X 2 S. PT-Search(P;S; `)returns the pair (j; lcp) in which j is P 's position in S and lcp = max lcp(P;S). It doesnot cost more than d lcp�`B e+ 1 disk accesses.Proof: The correctness follows from Lemmas 3.5 and 3.7. We now analyze the total numberof disk accesses. In the �rst phase, we do not make any disk accesses and we perform nomore than 2d character comparisons, as this is the number of branching characters in PTS.In the second phase, we do not require any more than d lcp�`B e+1 disk accesses to computelcp; c; c0 and O(lcp�`+1) character comparisons. Finally, we do not have to make any moredisk accesses or more than d character comparisons to determine hit node u and positionj.3.2 Dynamic operations on Patricia TriesWe now describe how to maintain Patricia tries under concatenate, split, insert and deleteoperations. These operations will be useful to us further on.PT-Concatenate(PTS1; PTS2; lcp; c; c0)We let S1 and S2 be two ordered string sets, such that S1's strings are lexicographicallysmaller than S2's strings. IfX is S1's rightmost string and Y is S2's leftmost string, then thelast three input parameters must satisfy lcp = lcp(X; Y ), c = X[lcp+1] and c0 = Y [lcp+1](with c <L c0). We use PT-Concatenate to concatenate Patricia tries PTS1 and PTS2 inorder to create a single Patricia trie PTS1[S2 whose ordered set S1 [ S2 is obtained byappending S2's strings to S1's. We build PTS1[S2 by merging PTS1's rightmost path withPTS2's leftmost path. 19
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Lemma 3.9. PT-Concatenate makes no disk accesses if its input parameters are in mainmemory.Proof: For technical reasons, we assume that PTS1 and PTS2 have a dummy root (withlen(dummy) = �1) connected to their original roots by a dummy arc labeled with anull character. We examine the nodes on PTS1's rightmost path, say �1; : : : ; �j, in whichW (�j) = X, and the nodes on PTS2's leftmost path, say �1; : : : ; �i, in which W (�i) = Y .We let �k+1 be the hit node for (�j; lcp) and �h+1 be the hit node for (�i; lcp), wherek 2 [1; j�1] and h 2 [1; i�1] (see De�nition 3.3). We deduce that the �rst lcp characters instrings X; Y;W (�k+1) and W (�h+1) are equal. Consequently, stringsW (�r) and W (�s) areone the other's pre�x for every r 2 [1; k] and s 2 [1; h], and thus the (branching) charactersin positions len(�r) + 1 and len(�s) + 1 are equal in strings W (�k+1) and W (�h+1) (sincelen(�k) < lcp and len(�h) < lcp by De�nition 3.3). We base the concatenation of PTS1 toPTS2 on this and merge paths �1; : : : ; �j and �1; : : : ; �i in the following two steps:In the �rst step, we concentrate on the sequence [�1; c01] : : : [�k; c0k], in which each pairconsists of a node �r and the branching character c0r labeling arc (�r; �r+1), for r = 1; : : : ; k.We also consider the similarly-de�ned sequence [�1; c001] : : : [�h; c00h]. We merge these twosequences into a new one, say � = [1; c1]; : : : ; [m; cm] (where m � k+h), according to theintegers len(�r) and len(�s) (r = 1; : : : ; k and s = 1; : : : ; h). If we get a tie while merging(i.e., len(�r) = len(�s)), we turn �r and �s into a single node i in � because they mustalso have the same branching character (see above). We then build a path in �nal treePTS1[S2 by scanning sequence �: For each pair [i; ci], we connect i to i+1 by means ofan arc (i; i+1), whose label is ci. We then concatenate all of i's children (except childi+1) taken from PTS1 or PTS2 (or maybe both). For the last pair [m; cm] in �, we createa dangling arc e whose label is cm and then go on to the second step.In the second step, we treat hit nodes �k+1 and �h+1. We create a node u that is attachedto e and we set len(u) = lcp. We make u be the parent of both �k+1 and �h+1 and label theirtwo incoming arcs with characters c and c0, respectively. We make a last check to make surethat there are no one-child nodes. That is, we check to see if len(u) = len(�k+1). If thisrelation holds, then arc (u; �k+1) is contracted by uniting u and �k+1 (and their children).We make the same check for �h+1.The correctness derives from Patricia trie's properties and from the fact that S1 andS2 are ordered string sets. The whole computation requires O(d) character comparisons(because jS1j and jS2j are O(d)) and no disk accesses because PTS1 and PTS2 are assumedto be already in main memory.PT-Split(PTS; Xj)The input is a Patricia trie PTS and a string Xj 2 S, where S = fX1; : : : ; Xdg. Theoutput is given by two Patricia tries PT lS and PT rS built on string sets fX1; : : : ; Xjg andfXj+1; : : : ; Xdg, respectively. A split can be considered as the inverse operation of PT-Concatenate(PT lS ; PT rS; : : :).Lemma 3.10. PT-Splitmakes no disk accesses if its input parameters are in main memory.20
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Proof: We identify PTS's leaf z such that W (z) = Xj and duplicate PTS by creating twotemporary copies PT lS and PT rS . We then start out from z and walk upwards in PT lS insuch a way that, for each node u visited, we delete all the nodes that descend from u's rightsiblings. If we produce one-child nodes, then we contract their arcs. A similar computationis performed in PT rS, except that we delete both u and all the nodes descending from u'sleft siblings. The two resulting trees are the Patricia tries built on string sets fX1; : : : ; Xjgand fXj+1; : : : ; Xdg. The whole computation requires O(d) character comparisons becausejSj = O(d). We make no disk accesses because PTS is assumed to be already in mainmemory.PT-Insert(X;PTS; Z; lcp; cX; cZ)PT-Insert adds string X to string set S by maintaining its lexicographic order. We createa leaf f , such that W (f) = X, and install f in PTS to the left of the leaf storing the inputstring Z 2 S. The last three input parameters must satisfy lcp = lcp(X;Z), cX = X[lcp+1]and cZ = Z[lcp+ 1].Lemma 3.11. PT-Insert makes no disk accesses if its input parameters are in main mem-ory.Proof: We identify leaf l, such that W (l) = Z, and hit node u for (l; lcp). If len(u) = lcp,we install leaf f as a child of u and label arc (u; f) with character cX . If lcp < len(u), thenwe remove arc (parent(u); u) and its branching character, say bc. We create another nodev and set len(v) = lcp. We install v as a child of parent(u) and label (parent(u); v) withbc. Then we make f and u be v's children and label arcs (v; f) and (v; u) with cX and cZ ,respectively. Each arc is installed according to its branching character's order. We makeno disk accesses because PTS is assumed to be already in main memory.PT-Delete(X;PTS)PT-Delete removes stringX from set S by identifying the leaf f 2 PTS such thatW (f) = Xand by removing f and maybe its parent, if f becomes its only child. The operation makesno disk accesses if its input parameters are in main memory.Theorem 3.12. Let us assume that the Patricia tries and the other input parameters arealready in main memory: PT-Concatenate, PT-Split, PT-Insert and PT-Delete require O(d)character comparisons but no disk accesses.4 A Technical Description of the String B-TreeWe now go into the technical details concerning the String B-tree data structure (seeSection 2 for our introductory concepts and notation, and Figure 2). Speci�cally, we letK = fK1; : : : ; Kkg denote the set of �'s strings in increasing lexicographic order. Aspreviously stated, we represent K's strings by their logical pointers and we obtain K fromstring set � in Problem 1 and from su�x set SUF (�) in Problem 2. We prevent any two21
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strings in K from being each other's pre�x by appending a distinct endmarker to each ofthem. This makes sure that we can correctly build the Patricia trie on any subset S� ofK's strings. We denote S�'s leftmost and rightmost strings by L(�) and R(�), respectively.Each leaf � of the String B-tree stores an ordered string set S� � K (where b � jS�j �2b) and the Patricia trie PT� built on S�. We recall here that S� is obtained by partitioningK among the leaves in such a way that a left-to-right scanning of them gives the whole setK. Leaf � is augmented with the following information:(a) Two pointers next(�) and prev(�) to de�ne the doubly-linked list of leaves in theString B-tree.(b) The longest common pre�x length ofR(prev(�)) and L(�) and ofR(�) and L(next(�))together with their mismatching characters.(c) The succ pointers and their inverse succ�1 pointers for S�'s strings and the parentpointer for �. This information is only introduced for solving Problem 2, whenK is obtained from SUF (�). We remember that succ(�[i; j�j]) points to the leafcontaining su�x �[i + 1; j�j]. If i = j�j then succ points to � itself, hence it is aself-loop pointer.Each internal node � of the String B-tree has n(�) children �1; : : : ; �n(�) and containsan ordered string set S� = fL(�1); R(�1); : : : ; L(�n(�)); R(�n(�))g obtained by copying theleftmost and the rightmost strings from its children (actually, we could copy only one stringfrom each child but this would make our algorithms more complex). Since n(�) = jS�j2 ,each node has from b2 to b children (except for the root, in which 2 � n(root) � b). Node �also contains the Patricia trie PT� built on S� and, when treating Problem 2, it contains:(c') The parent pointer for �.We have to make sure that a node of the String B-tree (containing Patricia trie, pointers,etc.) can be stu�ed into a single disk page so that the occupied space does not exceed diskpage size B. We therefore choose a proper value for b = �(B) and the resulting height isH = O(logB k). The following simple, useful properties hold:Property 4.1. Among �'s descending leaves, L(�) is the lexicographically smallest stringand R(�) is the lexicographically largest string.Proof: If � is a leaf, the property clearly follows. Otherwise, we use induction and thefact that �'s leftmost (resp., rightmost) child � satis�es L(�) = L(�) (resp., R(�) = R(�)).See Figure 2.Property 4.2. For any two adjacent strings Ki and Ki+1 in K, we have their longestcommon pre�x length lcp(Ki; Ki+1) and their two mismatching characters.
22
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Proof: If both strings belong to the same string set of a leaf in the String B-tree, say�, we take their two corresponding Patricia trie leaves l1; l2 2 PT� and �nd their lowestcommon ancestor u. By Property (3) of Patricia tries (Section 3), we deduce that len(u) =lcp(Ki; Ki+1) and the mismatching characters are the two branching characters belongingto u's outgoing arcs that lead to l1 and l2, respectively. On the contrary, if both twostrings belong to distinct leaves in the String B-tree, say � and �, we obtain that Ki =R(�), Ki+1 = L(�) and next(�) = �. We therefore �nd lcp(Ki; Ki+1) in �'s page (or �'spage) because � stores lcp(R(�); L(next(�))) together with their mismatching charactersby Points (a) and (b) at the beginning of this section.4.1 Searching in String B-treesWe use the String B-tree built on string set K = fK1; : : : ; Kkg for searching an arbitrarypattern string. We stated the intuition behind String B-tree searching in Section 2.1 anddescribed its algorithmic scheme in Figure 4. The input is a pattern P , where p = jP j,and the output is the pair (�; j) identifying P 's position in the whole set K, where � is theleaf of the String B-tree containing this position and j is P 's position in string set S� . Wenow extend this scheme by means of a more powerful searching tool, which will be alsoused in String B-tree updating. Speci�cally, we provide a procedure SB-Search-Down(P , �,`) whose input parameters satisfy Condition-A below and whose output is a triplet (� , j,lcp), such that (�; j) identi�es P 's position in K (as before) and the extra output parameterlcp = max lcp(P;K) is the length of P 's longest pre�x in common with any of K's strings.We have:Condition-A(P; �; `): Let � be a node of the String B-tree and ` be a non-negativeinteger:(A1) There is de�nitely one of �'s strings whose �rst ` characters are equal to P 's. Thatis, ` � lcp(X;P ) for a string X 2 S�.(A2) One of �'s descending leaves contains P 's position in K. That is, L(�) <L P �LR(�).Condition-A1(P; �; `) helps us to avoid rescanning. Condition-A2(P; �; `) states thatP 's position in K cannot be to L(�)'s left or to R(�)'s right (Fact 3.1) so that SB-Search-Down can �nd (� , j) by traversing the String B-tree downward from �. The pseudocode ofSB-Search-Down is illustrated in Figure 9 and easily derives from the one shown in Figure 4.We can prove that:Lemma 4.3. Let us take a node � of the String B-tree and an integer ` � 0 that satisfyCondition-A(P; �; `). SB-Search-Down(P , �, `) returns triplet (� , j, lcp), where � is the leafcontaining P 's position in K, j is P 's position in string set S� and lcp = max lcp(P;K). Itcosts lcp�`B +O(logB k) disk accesses.
23
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procedure SB-Search-Down(P , �, `);while true do(1) Load �'s disk page and let S� = fcK1; : : : ;cK2n(�)g;(2) (j; `) := PT-Search(P , S�, `); /* cKj�1 <L P �L cKj */(3) if � is a leaf then � := �; lcp := `; return (� , j, lcp);(4) if cKj = L(�), for a child � of � then� := �'s leftmost descending leaf; j := 1; lcp := `; return (� , j, lcp);(5) if cKj = R(�), for a child � of � then � := �;endwhileFigure 9. The pseudocode for �nding triplet (�; j; `) when Condition-A(P; �; `) holds.Proof: Without any loss in generality, we assume that P [i] = $ when i > p, so thatFact 3.4 holds for K (i.e., there is de�nitely a mismatch between P and any other stringand if some of K's strings have a pre�x P [1; p], then P 's position is to their left.) We referto the algorithmic scheme given in Figure 9. We �rst prove that, in Steps (1){(5), we eitheridentify triplet (� , j, lcp) or �nd a child � of � that maintains Condition-A. In the lattercase, we go deeper into the String B-tree by setting � := �.Let us examine string set S� and number its strings in lexicographic order: S� =fcK1; : : : ; cK2n(�)g. We can considerK's strings to be partitioned into three intervals (�1; cK1),[cK1; cK2n(�)] and (cK2n(�);1), where intervals (�1; cK1) and (cK2n(�);1) contain all of K'sstrings that are strictly smaller than cK1 or larger than cK2n(�), and interval [cK1; cK2n(�)] con-tains the strings stored in �'s descending leaves. Since we know that cK1 <L P �L cK2n(�) byCondition-A2(P; �; `), P 's position in K is inside [cK1; cK2n(�)] and � is one of �'s descendingleaves.When we load �'s page in Step (1), we can re�ne the partition of K's strings intointervals (�1; cK1); [cK1; cK2]; [cK3; cK4]; : : : ; [cK2n(�)�1; cK2n(�)]; (cK2n(�);1)by Property 4.1. Since Patricia trie PT� is available in �'s disk page, we use Condition-A1(P; �; `) and execute the blind search in S� by means of PT-Search(P;S�; `) (in Step (2)).This procedure returns P 's position j in S� (i.e., its two adjacent strings verifying cKj�1 <LP �L cKj) and integer max lcp(P;S�) assigned to ` (by Theorem 3.8). At this point, wefeel that a comment is in order. Since Fact 3.2 states that equality max lcp(P;S�) =maxflcp(cKj�1; P ); lcp(cKj; P )g holds, we can deduce that max lcp(P;S�) = max lcp(P;K)when strings cKj�1 and cKj are also adjacent in K. In this situation, we can safely setlcp := ` because ` = max lcp(P;S�) and we want parameter lcp to be max lcp(P;K) byde�nition.In this way, if � is a leaf (Step (3)), we stop searching because S� is a contiguous partof K and thus � := � and lcp := `.If � is an internal node, instead, we have to examine two other cases:(a) cKj = L(�) for a child � of � (Step (4)). We deduce that P 's position is just betweenintervals [cKj�2; cKj�1] and [cKj; cKj+1] and thus we set � to be �'s leftmost descending24
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leaf because of Property 4.1. We know that P 's position in S� is the �rst one becauseL(�) = L(�) = cKj. We can set j := 1 and lcp := `.(b) cKj = R(�) for a child � of � (Step (5)). This implies that cKj�1 = L(�) and so P 'sposition in K is inside interval [cKj�1; cKj]. We can reduce K's partition to only threeintervals (�1; cKj�1); [cKj�1; cKj]; (cKj;1) and therefore make Condition-A2(P; �; `)hold. Condition-A1(P; �; `) also holds: We know that cKj�1 and cKj belong to bothS� and S� because of the String B-tree layout (see Figure 2) and we must have` = lcp(X;P ) for an X 2 fcKj�1; cKjg � S�. We can therefore set � := � and go onin the while loop because Condition-A(P; �; `) holds.We eventually reach leaf � by a simple induction on � = �i; �i+1; : : : ; �H , where i is �'slevel in the String B-tree and H is the height of the String B-tree.We now analyze the total number of disk pages retrieved. As we go deeper into theString B-tree, we extend P 's matched pre�x without rescanning its previously examinedcharacters. Consequently, the sequence of values, say `i � `i+1 � � � � � `H , computed byPT-Search in Step (2) is non-decreasing because of Lemma 3.6. In a generic String B-treelevel s � i, we only need one disk access to retrieve node �s from external memory, and nomore than d `s�`s�1B e + 1 disk accesses to execute PT-Search(P;S�s; `s�1) and compute pair(�; j) by Theorem 3.8. Since `i�1 is input parameter ` and `H is output parameter lcp ofSB-Search-Down, its total number of disk accesses does not exceed PHs=i(d `s�`s�1B e + 2) �`H�`i�1B + 3H � lcp�`B +O(logB k).We are now ready to state our �rst result:Theorem 4.4. Pre�x Search(P ) can be implemented with O(p+occB + logB k) worst-casedisk accesses.Proof: We recall that K is the sorted sequence of �'s strings. We performed the Pre�xSearch operation in Section 2.1 by a two-phase procedure in which we �rst retrieved theleaves �L and �R, containing respectively K's leftmost and rightmost strings whose pre�xwas P , and then scanned all of the leaves lying between them by using the next-pointers.We can now implement Pre�x Search(P ) by only retrieving �L and therefore avoid traversingthe String B-tree twice.First of all, we �nd P 's position inK. We check the two trivial cases in which either P �LK1 or Kk <L P with O( pB ) disk accesses by a direct character-by-character comparison. Inthe former case, we set � as the leftmost leaf in the String B-tree, j := 1 and lcp as thelongest pre�x matched by direct comparison; in the latter case, we stop searching becausethere are no occurrences. If both conditions are false (i.e., K1 <L P �L Kk), we executeSB-Search-Down(P; root; 0). Since Condition-A(P; root; 0) trivially holds, SB-Search-Downcorrectly returns triplet (� , j, lcp) and takes O( pB + logB k) disk accesses (because lcp � p;see Lemma 4.3).We then list all of K's strings whose pre�x is P . Let Kpos be the string in K thatoccupies position j in S� . We check to see if lcp � p (otherwise, there are no occurrences,by Fact 3.1). If it does, then Kpos is an occurrence and so we examine Kpos; : : : ; Kpos+occ�125
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by verifying that the common pre�x length of two adjacent strings Ki and Ki+1 is at leastp. We do not need to make any direct comparisons because lcp(Ki; Ki+1) is available inthe current disk page (Property 4.2). We only access a contiguous part of leaves in theString B-tree and retrieve all the occ occurrences with O(occB ) disk accesses because at leastb = �(B) su�xes are contained in each accessed leaf (except the �rst and the last one).Corollary 4.5. Range Query(K 0; K 00) takes O(k0+k00+occB +logB k) worst-case disk accesses,where k0 = jK 0j and k00 = jK 00j. Substring Search(P ) takes O(p+occB + logB N) worst-casedisk accesses, where p = jP j.Proof: Range Query(K 0; K 00) can be implemented by searching the positions of K 0 andK 00 in set K with O(k0+k00B + logB k) disk accesses (by Lemma 4.3) and by listing all of K'sstrings lying between K 0 and K 00. It costs O(occB ) disk accesses.Substring Search(P ) can be implemented by letting K = SUF (�) and k = N and byexecuting Pre�x Search(P ) (by Theorem 4.4).The search bounds stated in Theorem 4.4 and Corollary 4.5 are asymptotically optimalfor a large alphabet � whose characters can only be accessed by comparisons. We provethe lower bound for the Pre�x Search(P ) operation by using the external-memory pointermachine, introduced in [42] with the aim of generalizing the pointer machine [43] to externalmemory. This also holds for Range Query and Substring Search operations. In the external-memory pointer machine, a data structure is seen as a graph with a source vertex s. Eachvertex is a disk page of size B, which contains no more than B items (i.e., characters,polynomially-bounded integers, or pointers) and can be linked to no more than B vertices.Given a pattern P , a searching algorithmmust start from s and traverse the graph accordingto the following restrictions: (a) Any vertex except s can be accessed only if a vertexleading to it has already been accessed. (b) For each occurrence, at least one vertex hasto be accessed. (c) A link among accessed vertices can be changed dynamically, providedthat the number of outgoing links in a vertex does not exceed B.Lemma 4.6. For a large alphabet � whose characters can only be accessed by compar-isons, searching for a pattern P and listing all of its occ occurrences in K's strings requires
( pB +maxfoccB ; logB kg) worst-case disk accesses in external memory.Proof: We examine the case in which P contains p distinct characters and each of thesecharacters appears at least once in one of K's strings. We deduce that at least d pB e pagesmust be accessed to verify that P is actually an occurrence by a simple adversary argument.As a result, the occurrences must all be stored somewhere explicitly and the total numberof accessed pages to list all of them has to be at least doccB e because a page can maintainno more than B items. Finally, searching for P is at least as di�cult as �nding its �rstcharacter P [1]. Since � is general, the retrieval of the strings whose �rst character is P [1]requires 
(logB j�j) disk accesses because the graph has maximum vertex degree B. Thelower bound follows by letting � verify log j�j = 
(log k).26
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procedure SB-Search-Up-Down(P , �, `);/* upward traversal */(1) first := 1; /* �rst position */while true do(2) load �'s page;(3) last := jS�j+ 1; /* last position in S� */(4) (j; `) := PT-Search(P;S�; `);(5) if j = first and L(�) = K1 then(6) � := the leftmost leaf in the String B-tree; lcp := `; return (� , j, lcp);(7) else if j = last and R(�) = Kk then(8) � := the rightmost leaf in the String B-tree; lcp := `; return (� , j, lcp);(9) else if first < j < last then exit-while;(10) � := parent(�);endwhile/* downward traversal */(11) (�; j; lcp) := SB-Search-Down(P; �; `);(12) return (� , j, lcp).Figure 10. The pseudocode for �nding triplet (� , j, lcp) when only Condition-A1(P; �; `) holds.4.2 More About SearchingSB-Search-Down(P; �; `) is the fundamental procedure for searching in String B-trees andis based on Condition-A(P; �; `). We now discuss what happens if we remove Condition-A2(i.e., L(�) <L P �L R(�)) and use only Condition-A1 (i.e., there is an integer `, such that` � lcp(X;P ) for a string X 2 S�). In other words, when we load �'s page, we assume thatwe know that the �rst ` characters of P are shared by one of S�'s strings, but we are nolonger sure that P 's position is in one of �'s descending leaves in the String B-tree. Theinvestigation of this case will be useful to us when we design the insertion procedure forProblem 2.We extend procedure SB-Search-Down(P; �; `) to a new procedure which we call SB-Search-Up-Down(P , �, `), whose input parameters satisfy Condition-A1(P; �; `) only andwhose output is the same triplet (� , j, lcp) as SB-Search-Down's, where pair (�; j) identi�esP 's position in K and lcp = max lcp(P;K). The main feature is that we now traversethe String B-tree twice: �rst we go upwards by means of a new search procedure and byonly maintaining Condition-A1. We stop this traversal as soon as Condition-A2 is satis�edand then we traverse the String B-tree downwards by executing SB-Search-Down becauseCondition-A holds. The pseudocode is illustrated in Figure 10 where K = fK1; : : : ; Kkg isthe ordered string set.Lemma 4.7. Let us take a node � in the String B-tree and an integer ` � 0, such thatCondition-A1(P; �; `) is satis�ed. SB-Search-Up-Down(P , �, `) returns the triplet (� , j,lcp), where � is the leaf in the String B-tree containing P 's position in K, j is P 's positionin string set S� and lcp = max lcp(P;K). It costs lcp�`B +O(logB k) disk accesses.27
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Proof: The aim of the two-phase String B-tree traversal (Figure 10) is to increase thenumber of P 's matched characters without having to perform rescanning. Let us assumethat P �L R(�) without any loss in generality (the case L(�) <L P is identical); thus, leaf� is to the left of � (included).In the �rst phase (Steps (2){(10)), we start from � and traverse the String B-treeupwards until we detect a node that is the lowest common ancestor of � (known) and �(unknown). We prove the correctness of this phase by showing that thewhile loop preservesboth Condition-A1(P; �; `) and disequality P �L R(�) when we assign the new values to �and `. Indeed, Steps (2){(4) �nd P 's position j in S� and compute value ` = max lcp(P;S�)to keep track of the number of P 's characters matched by the PT-Search procedure (byTheorem 3.8). At this point, we are faced with the problem of deciding if we have to moveupwards in the String B-tree or if the current node � is the lowest common ancestor we arelooking for (if so, we begin the second phase). We check a condition in Steps (5) and (6)that represents the \border" case in which we can readily �nd (� ,j,lcp): If j = first andL(�) = K1 (i.e, P is smaller than any of K's strings), then we return the leftmost leaf inthe String B-tree as � and safely set lcp = ` (by Theorem 3.8 and Fact 3.1). Otherwise, wedecide according to the following possibilities: 3� Step (9): j > first. We infer that L(�) <L P �L R(�) and conclude that � is the�rst ancestor of � that we meet in our upward traversal (by Property 4.1). We thenexit the while loop and begin the second phase (described below). At this point, weare sure that both Condition-A1 and Condition-A2 are satis�ed.� Step (10): j = first and L(�) 6= K1. Both Condition-A1(P; parent(�); `) and P �LR(parent(�)) are satis�ed. Speci�cally, we verify the former by choosing X = L(�)because lcp(P; L(�)) = ` (where j = first; see Fact 3.2) and L(�) also belongs toparent(�)'s string set (by the String B-tree layout, see Figure 2). We verify the lattercondition because P �L R(�) �L R(parent(�)) holds by the String B-tree layout.We repeat the while loop and move to �'s parent by setting � := parent(�), whichexists because L(�) 6= K1 and so � 6= root.In the second phase (Steps (11) and (12)), we trace a downward path starting fromnode � down to leaf � . Since Condition-A(P; �; `) holds at the beginning of the secondphase (by Step (9)), we can execute SB-Search-Down(P , �, `) to traverse the String B-treedownwards by starting from �. We eventually retrieve triplet (� , j, lcp) (by Lemma 4.3)and return it.We now analyze the complexity of SB-Search-Up-Down. In the worst case, we executeboth the upward and downward String B-tree traversals. During the upward traversal,we take one disk access to load �'s page and no more than d `0�`B e + 1 disk accesses toexecute PT-Search(P ,S�,`) by Theorem 3.8, where `0 is the new value assigned to ` (i.e.,`0 = max lcp(P;S�) � `). If we let `up be the last ` value in the upward traversal, the totalcost of this traversal is a telescopic sum equal to `up�`B +O(H), where H = O(logB k) is theString B-tree height. During the downward traversal, we take lcp�`upB +O(H) disk accesses3Note that Steps (7) and (8) are not executed because j < last, due to our assumption that P �L R(�).Similarly, Steps (5) and (6) are not executed when we assume L(�) <L P because j > first.28
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(by Lemma 4.3) because Condition-A(P; �; `up) is satis�ed and lcp is the �nal value of `(i.e., the total number of P 's characters examined). If we sum the upward and downwardtraversal costs, we obtain lcp�`B +O(logB k) worst-case disk accesses.4.3 String InsertionWe discussed this operation for Problem 1 in Section 2.1 and we saw that its implementationis the most challenging task we have to face to solve Problem 2 (i.e., when K is obtainedfrom SUF (�)). We now treat this problem by describing how to update the String B-treebuilt on SUF (�) when adding a new string Y [1; m] to �. The resulting String B-treeis obtained by inserting all of Y 's su�xes into K = SUF (�) in lexicographic order. InSection 2.2, we discussed the problems that arise when we insert Y 's su�xes (i.e., theelimination of rescanning) and explained the algorithmic structure and logic behind ourapproach. We now go on to formalize these ideas and give a detailed description of theinsertion procedure.Without any loss in generality, we assume that Y [m] is a distinct endmarker; therefore,no two su�xes in SUF (� [ fY g) are each other's pre�x. For a �xed i, let us numberthe strings in SUF (�) [ fY [1; m]; : : : ; Y [i;m]g in lexicographic order and denote them bySUFi = fS1; S2; : : : ; SN+ig (we let SUF0 = SUF (�)). We make sure that the String B-treestoring the string set SUFi satis�es the following condition:Condition-B(i):(B1) Su�xes Y [j;m] are stored in the String B-tree, for all 1 � j � i, and Y [i;m]shares its �rst hi = max lcp(Y [i;m]; SUFi�1) characters with one of its adjacentstrings.(B2) All the succ pointers of SUFi's strings are correctly set except for su�x Y [i;m]whose succ pointer is still dangling. If i = m, then succ(Y [i;m]) is a self-looppointer to its own leaf.We let Condition-B(0) hold by convention. We insert Y 's su�xes going from its longest toits shortest one by executing the pseudocode illustrated in Figure 8. For i = 1; 2; : : : ; m, weinsert Y [i;m] into the String B-tree storing SUFi�1 and satisfying Condition-B(i� 1) bymeans of Steps (1){(5) in Figure 8. We obtain the String B-tree storing SUFi and satisfyingCondition-B(i). When i = m, we have the �nal String B-tree built on SUF (� [ fY g).In the rest of this section we show how to insert su�x Y [i;m] and only discuss Steps (1){(3), because Steps (4) and (5) are self-explanatory.Step (1): We aim at computing triplet (�i; ji; hi), where pair (�i; ji) identi�es Y [i;m]'sposition in SUFi�1 (i.e., �i is the leaf in the String B-tree containing this position and jiis Y [i;m]'s position in S�i) and hi = max lcp(Y [i;m]; SUFi�1) is the length of Y [i;m]'slongest pre�x in common with any of SUFi�1's strings. We begin by identifying a crucialnode � as follows:� If i = 1, then � is the root of the String B-tree and we safely set h0 = 0.29
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� If i > 1, we know by Condition-B1(i�1) that a string Sl 2 SUFi�1 denotes su�x Y [i�1; m] and its �rst hi�1 characters are shared with one of its two adjacent strings. Wetherefore examine either Sl�1 (when lcp(Sl�1; Sl) = hi�1) or Sl+1 (when lcp(Sl; Sl+1) =hi�1). Let us assume that we examine Sl�1 by accessing its leaf in the String B-tree.We let � be the leaf pointed to by succ(Sl�1), correctly set by Condition-B2(i � 1)because Sl�1 is not Y [i� 1; m].At this point, we need the following observation about �'s string set:Lemma 4.8. There is a string X in set S� that shares at least its �rst maxf0; hi�1 � 1gcharacters with Y [i;m], i.e., lcp(Y [i;m]; X) � maxf0; hi�1 � 1g.Proof: The lemma trivially holds when 0 � hi�1 � 1 because every string X satis-�es lcp(Y [i;m]; X) � 0 = maxf0; hi�1 � 1g. We therefore assume that hi�1 > 1, somaxf0; hi�1 � 1g = hi�1 � 1 � 1. If we let X denote the string obtained by removingSl�1's �rst character (i.e., X is Sl�1's second su�x), we can deduce that X must belong toS� because succ(Sl�1) = �. Moreover, X and Y [i;m] share their �rst hi�1 � 1 charactersbecause the �rst hi�1 characters in Sl�1 and Y [i� 1; m] are equal by the above hypothesis.We can therefore conclude that lcp(Y [i;m]; X) � maxf0; hi�1 � 1g.Corollary 4.9. hi � maxf0; hi�1 � 1g.Proof: Since hi = max lcp(Y [i;m]; SUFi�1) (by Condition-B1) and since there is a stringX 2 S� � SUFi�1 that shares the �rst lcp(Y [i;m]; X) � maxf0; hi�1 � 1g characters withY [i;m] (by Lemma 4.8), we can conclude that hi � maxf0; hi�1 � 1g.Lemma 4.8 and Corollary 4.9 suggest that we can start out from node � and onlyexamine Y 's characters in positions i + maxf0; hi�1 � 1g; : : : ; i + hi to perform searching.Namely, we execute SB-Search-Up-Down(Y [i;m], �, maxf0; hi�1 � 1g). We can prove:Lemma 4.10. If Condition-B(i � 1) holds, then we can �nd triplet (�i; ji; hi) by usinghi�maxf0;hi�1�1gB +O(logB(N +m)) worst-case disk accesses, where 1 � i � m.Proof: For i = 1, Condition-A1(Y [1; m]; root; 0) is trivially satis�ed for P = Y [1; m],� = root and maxf0; h0 � 1g = 0. Consequently, we �nd triplet (�1; j1; h1) by executingSB-Search-Up-Down(Y [1; m], root, 0) (by Lemma 4.7). It costs h1B +O(logB N) disk accesses,as (�1; j1; h1) = (�; j; lcp), K = SUF0 and k = N in Lemma 4.7.For i > 1, we use Condition-B(i � 1). We know by Condition-B1(i� 1) that a stringSl 2 SUFi�1 denotes su�x Y [i�1; m] and either lcp(Sl�1; Sl) = hi�1 or lcp(Sl; Sl+1) = hi�1.We can check if the former or the latter condition holds because we store lcp(Sl�1; Sl) andlcp(Sl; Sl+1) in the leaves of the String B-tree (by Property 4.2). Condition-B2(i�1) makesus sure that the succ pointers for Sl�1 and Sl+1 are set and we can always reach node � byfollowing one of them. We only need O(1) disk accesses for this computation. After that,since we satisfy Condition-A1(Y [i;m]; �;maxf0; hi�1 � 1g) in node � (by Lemma 4.8), wecan execute SB-Search-Up-Down(Y [i;m], �, maxf0; hi�1� 1g) in order to obtain the triplet(�i; ji; hi) (by Lemma 4.7). We know that hi � maxf0; hi�1 � 1g by Corollary 4.9 and soit costs hi�maxf0;hi�1�1gB + O(logB(N +m)) disk accesses (by letting (�i; ji; hi) = (�; j; lcp),K = SUFi�1 and k � N +m in Lemma 4.7).30
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Step (2): We take triplet (�i; ji; hi) and insert su�x Y [i;m] into S�i before its ji-th stringby means of the PT-Insert procedure. We prove:Lemma 4.11. Y [i;m]'s insertion in �i's string set requires one disk access.Proof: Let Sr be the string in SUFi�1 that corresponds to the (ji)-th string in S�i . SinceY [i;m] has to be inserted to Sr's left, we execute PT-Insert(Y [i;m]; PT�i; Sr; lcp; Y [i +lcp]; c), where the parameters lcp = lcp(Y [i;m]; Sr) and c = Sr[lcp + 1] are determined asfollows: If r = 1, then lcp = hi by Fact 3.2. If r > 1, then we know lcp(Sr�1; Sr) andtheir mismatching characters, say cr�1 and cr (by Property 4.2). If lcp(Sr�1; Sr) � hi,then we are sure that lcp = hi by Fact 3.2, because r is Y [i;m]'s position in SUFi�1. Iflcp(Sr�1; Sr) < hi, we know that either lcp = hi (if cr = Y [i + lcp(Sr�1; Sr)]) or lcp =lcp(Sr�1; Sr) (if cr 6= Y [i + lcp(Sr�1; Sr)]). We then access Sr to set c = Sr[lcp+ 1].We can prove another version of Lemma 4.11 in which no disk accesses are needed toinsert Y [i;m]. However, this would involve a more complex case analysis without improvingits overall complexity.Step (3): If a split occurs after Y [i;m]'s insertion (i.e., jS�ij > 2b), we rebalance theString B-tree and possibly redirect some succ and parent pointers. This rebalancing oper-ation, called SB-Split(�i), cannot be handled in a straightforward way and so we postponea detailed discussion of it to Section 4.5. We are now able to state our main result on Y 'sinsertion:Lemma 4.12. We can insert a new string Y [1; m] into the String B-tree (i.e., all of Y 'ssu�xes into SUF (�)) with O(m logB(N +m)) disk accesses plus m calls to SB-Split in theworst case.Proof: We refer to the pseudocode shown in Figure 8. Its correctness follows by inductionon Condition-B(i), for i = 1; 2; : : : ; m. We assume that Condition-B(i � 1) holds (this istrue by convention for i = 1). We �nd triplet (�i; ji; hi) in Step (1) (by Lemma 4.10) andknow that Y [i;m] shares its �rst hi characters with one of its two adjacent strings (byFact 3.2). We then insert Y [i;m] into �i with one disk access in Step (2) (by Lemma 4.11)and maybe handle a split by means of an SB-Split call in Step (3). Consequently, we satisfyCondition-B1(i). In Steps (4) and (5), we set succ(Y [i�1; m]) and let succ(Y [i;m]) be theonly dangling pointer (unless i = m) in order to satisfy Condition-B2(i). We conclude thatCondition-B(i) holds after Steps (1){(5). At the end of the insertion process, the validity ofCondition-B(m) implies that we have correctly built the String B-tree on SUF (� [ fY g).As far as its complexity is concerned, Step (1) requires di = hi�maxf0;hi�1�1gB +O(logB(N+m)) disk accesses by Lemma 4.10. Step (2) takes one disk accesses by Lemma 4.11. Step (3)makes one call to SB-Split. Steps (4) and (5) do not take any disk accesses if we leave Y [i�1; m]'s page in main memory for another iteration. The total cost is therefore O(Pmi=1 di) =O(hm�h0B + m logB(N + m)), plus m calls to SB-Split. As previously stated, h0 = 0 andhm � m, and so the whole insertion process takes a total of O(m logB(N+m)) disk accesses,plus m calls to SB-Split in the worst case. 31
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4.4 String DeletionWe can update the String B-tree by deleting a string Y [1; m] from �. We delete all of Y 'ssu�xes from K = SUF (�) going from the longest to the shortest one. We �rst locate leaf�1, which contains su�x Y [1; m], by means of SB-Search-Up-Down(Y [1; m]; root; 0), usingO(mB + logB(N +m)) disk accesses (by Lemma 4.10). For i > 1, we locate leaf �i, whichcontains su�x Y [i;m], by simply following the succ(Y [i� 1; m]) pointer. This takes us nomore than O(1) disk accesses.When we load �i's page, we delete Y [i;m] from its string set S�i by executing PT-Delete(Y [i;m]; PT�i). If a merge occurs after Y [i;m]'s deletion (i.e., jS�ij < b), then werebalance the String B-tree by means of SB-Merge(�i). We postpone our discussion of SB-Merge to Section 4.5. It is worth noting that no succ pointers are dangling after a deletion.We obtain:Lemma 4.13. We can delete a string Y [1; m] from the String B-tree (i.e., all of Y 'ssu�xes from SUF (�)) in O(m+ logB(N +m)) disk accesses plus m calls to SB-Merge inthe worst case.4.5 Handling SB-Split and SB-Merge operationsWe �rst describe a solution for SB-Split and SB-Merge that takes O(B logB(N +m)) worst-case disk accesses per operation by a straightforward pointer-handling approach. We thenimprove this solution by means of an accounting method that takes O(logB(N +m)) amor-tized disk accesses per operation. Finally, we show how to obtainO(logB(N+m)) worst-casedisk accesses per operation by means of a clustering technique. We introduce the �rst twomethods to explain the third one (based upon clustering) better. We say that a node � isfull after an insertion if its string set size jS�j becomes larger than 2b; a node � is half-fullafter a deletion if jS�j becomes smaller than b.First method: Pointer handling. Let us �rst examine SB-Split(�), where � is a fullleaf. We split set S� by the PT-Split operation applied to PT� in order to produce twosmaller Patricia tries, say PT1 and PT2 (where PT2 stores b strings). Patricia trie PT1takes the place of PT� inside �'s page, while PT2 is put into a new leaf �'s disk page. Welet � be �'s right sibling and update the node information as follows: we properly set �'sand �'s pointers (i.e., prev, next and parent) and determine the longest common pre�xlength of strings R(�) and L(�) and their mismatching characters, by Property 4.2.We update the b pointers succ leading to the strings moved from � to � (they must nowpoint to � instead of �) and use the inverse succ�1 pointers to determine their locations.Moreover, we maintain the String B-tree structure by inserting strings R(�) and L(�) intoset Sparent(�). This insertion may cause parent(�) to split; if so, b2 parent pointers in itschildren have to change and point to parent(�)'s new sibling. When an ancestor becomesfull, it makes us insert two strings in its parent and so the splitting process can continueand involve many of �'s ancestors until either a non-full ancestor is encountered or a newroot is created. In the latter case the height of the String B-tree is increased by one.The SB-Merge(�) operation (in which � is a half-full leaf) a�ects one of �'s adjacentsiblings, say �. Without any loss in generality, we assume that � is on �'s right. We32
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move �'s two leftmost strings into �, so that � is no longer half-full. However, if � alsobecomes half-full, we merge � and � together by executing a PT-Concatenate operation ontheir corresponding Patricia tries PT� and PT� (see Section 3.2; the other input parameterslcp; c and c0 can be obtained by Property 4.2). Analogously to the SB-Split case, we redirectno more than b pointers succ from � to � and deallocate �'s disk page. PT-Concatenatecan also cause both the merging of �'s and �'s parents because we delete R(�) and L(�)from them, respectively, and the updating of no more than b2 parent pointers in parent(�)'schildren. The merging process can continue and involve many of �'s ancestors until eithera non-half-full ancestor is encountered or the root is removed. In the latter case, the heightof the String B-tree is decreased by one.It follows that we need O(1) disk accesses to handle each node except for the updating ofits incoming succ and parent pointers, which do not exceed b in number and can be storedin di�erent disk pages. Therefore, their updating takes a total of O(bH) = O(B logB(N +m)) worst-case disk accesses, while the other operations involved only require O(H) diskaccesses. This analysis makes it clear that updating succ and parent pointers is our majorobstacle in achieving an e�cient String B-tree update. We focus on this part of the updatingprocess in the rest of this section.Second method: Amortized accounting. We use the accounting method [44] forour amortized analysis and show how to achieve the O(logB(N +m)) amortized bound peroperation. 4 Without any loss in generality, we assume that we have to redirect exactlyb pointers (succ or parent) for every node splitting or merging and we deal with pairsof strings in every insertion or deletion operation (the latter assumption is motivated bythe String B-tree layout, see Figure 2). At the beginning, we let each newly-created nodecontain 3b2 strings and we assign an account of zero credits to it. We choose a partitioningof SUF (�)'s strings among the nodes of the String B-tree such that they contain 3b2 stringseach at �rst. If the root or the rightmost node in a level contains fewer strings, we addsome dummy strings. When a node becomes either half-full or full, we show that it hasaccumulated a su�ciently large number of credits to pay for the �(b) disk accesses neededfor the updating of its succ or parent pointers. We say that a node is a�ected by a split(resp., merge) operation, if it is the updated leaf or one of its children is split (resp.,merged).Let us examine SB-Split and a node � a�ected by the corresponding splitting process.Its string set size jS�j is increased by two because we treat pairs of strings. If � is full (i.e.,jS�j = 2b+2), then we take one of �'s adjacent siblings, say �, and we assume without anyloss in generality that � is on �'s right. We move �'s two rightmost strings to �. If � alsobecomes full, we create a new node � and distribute the 4b+2 strings in S� [S� as follows:� contains the �rst 3b2 strings, � gets the next b + 2 strings and � contains the remaining3b2 strings. Finally, we redirect the b+2 succ pointers which previously led to nodes � and�, in order to point to new node � .Let us now examine SB-Merge and a node � a�ected by the corresponding mergingprocess. Its string set size jS�j is decreased by two because we treat pairs of strings. If � is4A similar approach was presented in [32]. We treat the problem in detail here in order to make thesubsequent discussion of the worst-case solution clearer.33
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half-full (i.e., jS�j = b� 2), we take one of �'s adjacent siblings, say �, and assume withoutany loss in generality that � is on �'s right. We move �'s two leftmost strings to �. If �also becomes half-full, we put all of �'s strings into � and thus form a set of 2b� 2 stringsand deallocate �'s disk page. Finally, we redirect b pointers from � to �.We can charge the cost for the redirection of the succ and parent pointers to the previousupdate operations to achieve the following amortized bound:Lemma 4.14. A given string Y [1; m] can be inserted into � or deleted from it withO(m logB(N +m)) amortized disk accesses.Proof: Since we use Lemmas 4.12 and 4.13, we do not need any more than O(m logB(N +m)) disk accesses, plus m calls to either SB-Split or SB-Merge. We show that we haveenough credits to pay for redirecting the succ and parent pointers in each a�ected node.We maintain the invariant that, if s is a node's string set size, its account balance must haveat least BL(s) = 3 ���s� 3b2 ��� credits. Consequently, we can use BL(b) = BL(2b) = 3b2 creditsfor updating the pointers. We now show how to manage these accounts and maintain theinvariant on BL.We assign 6H credits to each SB-Split or SB-Merge call, where H = O(logB(N +m)) isthe current height of the String B-tree. Each a�ected node (there are no more than H ofthem) increases or decreases its string set size by two and so we always assign 6 credits toits balance in order to maintain the invariant on BL. We employ the accumulated creditsas follows (we assume that b and 3b2 are even integers and b � 4, because each node has atleast two children):Let us consider the splitting of a node �. If � is full, we move two strings and 6 credits to�'s account after deleting them from �'s account, which now has at least BL(2b+2)� 6 =BL(2b) credits. If � also becomes full, then it has at least BL(2b) + 6 = BL(2b + 2)credits. We handle �'s and �'s splitting by using the credits in their accounts and these, inturn, satisfy the invariant on BL. We have at least BL(2b) + BL(2b + 2) � 3b credits fordistributing strings in �; � and �: we give 3b2 �6 credits to � 's balance (because jS� j = b+2and BL(b + 2) = 3b2 � 6) and zero credits to �'s and �'s balance (because jS�j = jS�j = 3b2and BL(3b2 ) = 0). We spend the remaining 3b2 + 6 credits for updating the b + 2 pointersredirected to � (because 3b2 + 6 > b+ 2 for b � 4).Let us consider the merging of a node �. If � is half-full, we move two strings to �and safely add 6 credits to �'s account after deleting them from �'s account. This is sureto maintain the invariant on BL for �'s account. In this way, �'s account has at leastBL(b � 2) � 6 = BL(b) credits on it. If � also becomes half-full, then it has at leastBL(b � 2) credits because of the invariant on �'s account. We therefore have at leastBL(b)+BL(b�2) � 3b credits for concatenating strings in � and �: we leave 3b2 �6 creditsin �'s new balance (so that BL(2b � 2) = 3b2 � 6) and we spend the remaining credits (atleast 3b2 ) to update the b pointers redirected to �.In conclusion, we always have enough credits for updating the succ and parent pointersand each operation takes O(H) amortized disk accesses.Third method: Worst-case clustering. We move some strings in pairs between twoadjacent sibling nodes in a lazy fashion to obtain our worst-case bounds. The main idea34
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underlying this approach is that SB-Split and SB-Merge cannot be executed on the samenode too frequently. We can distribute their cost incrementally over the other operationsthat involve the node between any two consecutive SB-Split or SB-Merge operations.In the previously-described amortized method, when we split a node �, we take oneof its adjacent siblings, say �, and create a node � between � and �. We then distributeS�[S�'s strings among nodes �, � and � by using the credits accumulated (see Lemma 4.14'sproof). At this point, instead, we delay the distribution process on the subsequent updateoperations by keeping a pointer from nodes � and � to node � and by marking the b + 2strings to be moved to � . The three nodes form a cluster, called split-cluster . We move fourmarked strings and their corresponding succ or parent pointers from � and � to � everytime we access the split-cluster (i.e., one of its three nodes) to perform some subsequentupdate operations (insertions or deletions).When merging a node � with one of its adjacent siblings, say �, we set a pointer tolink them and thus form a merge-cluster . We mark the b strings to be moved from � to �.We move four marked strings and their corresponding succ or parent pointers every timewe access the merge-cluster (i.e., one of its two nodes) to perform some subsequent updateoperations (insertions or deletions).We also introduce the notion of singleton clusters, which are the nodes not involvedin split or merge operations. We follow the rule that after moving the last marked stringof a split- or merge-cluster, we transform it into three or less singleton clusters with O(1)disk accesses. It is worth noting that our strategy does not a�ect our search, insert anddelete algorithms because we can ignore the underlying clustering in the whole String B-treestructure (except when handling SB-Split and SB-Merge as discussed below).We now deal with the problem of managing half-full and full nodes in terms of half-fulland full clusters. We have to �x the total number of strings (both marked and unmarked)that can be stored in a cluster. A singleton cluster can contain from b to 2b strings (3b2 atthe beginning). A split-cluster can store from 3b to 6b strings (4b + 2 at the beginning).A merge-cluster can have from b to 4b strings (2b � 2 at the beginning). We say that acluster is inconsistent if its number of strings is either below the minimum or above themaximum allowed (depending on the type of cluster). We prove the fundamental propertythat we only use singleton clusters when forming non-singleton clusters. In other words,all the marked strings (and their succ and parent pointers) in a non-singleton cluster havebeen moved to form three or less singleton clusters before any other clustering involvingthem can occur. We can now prove the following result:Lemma 4.15. If a cluster is inconsistent, it is a singleton cluster.Proof: As stated above, after moving the last marked string in a cluster, we transformthe cluster into three or less singleton clusters. By contradiction, let us now assume that asplit-cluster is inconsistent. At the beginning, it contains 4b+ 2 strings (b+ 2 of them aremarked) so the cluster is accessed at least b2 times before becoming inconsistent becausewe only treat strings in pairs. Since at least 4 b2 � b + 2 marked strings and pointers aremoved, we can conclude that all marked strings are moved and the cluster is decomposedinto three or less singleton clusters before becoming inconsistent again. An analogousargument holds when we assume that a merge-cluster is inconsistent. At the beginning, it35
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contains 2b�2 strings (b of them are marked) and so it is accessed at least b�22 times beforebecoming inconsistent. Since at least 4 b�22 � b marked strings (b � 4) are moved, we canconclude that all the marked strings are moved and the cluster is decomposed into threeor less singleton clusters before becoming inconsistent again. Consequently, only singletonclusters can become inconsistent.Theorem 4.16. A given string Y [1; m] can be inserted into � or deleted from it withO(m logB(N +m)) worst-case disk accesses.Proof: An SB-Split a�ects a leaf-to-root path � of H nodes and only allows the insertionof two or less strings into each node in � in the worst case, where H is the current height ofthe String B-tree. We therefore access H clusters in the worst case and maybe move fourmarked strings and pointers in some of them. Let us now examine a cluster containing anode � in path � and let C� be its cluster. Two cases occur:(a) C� is a singleton cluster. If C� is not inconsistent, we have enough room for the newstrings. Otherwise (i.e., C� is inconsistent), we have to move two strings from � to one ofits two adjacent siblings, say � (let C� be its cluster). If C� also becomes inconsistent, it isa singleton cluster (Lemma 4.15) and so we create a new split-cluster made up of � and �.If C� does not become inconsistent, it has enough room for �'s moved strings. If C� is alsoa non-singleton cluster, we move four marked strings internally in it, and create three orless singleton clusters from it, if it does not contain any marked strings. This computationtakes O(1) disk accesses.(b) C� is a non-singleton cluster. We insert the new strings in C� because it cannotbe inconsistent (by Lemma 4.15) and we move four marked strings internally in C�. Afterthat, if C� does not contain any marked strings, we create three or less singleton clusters.This computation takes O(1) disk accesses, too.We conclude that we need a total of O(H) worst-case disk accesses to handle an SB-Split.As far as SB-Merge is concerned, we can perform an analogous analysis to show that wespend O(H) worst-case disk accesses in this case, too. In brief, updating the String B-treeunder the insertion or deletion of a string Y [1; m] requires O(m) SB-Split and SB-Mergeoperations, and each operation makes O(H) = O(logB(N +m)) disk accesses in the worstcase. Consequently, the bound we claim follows from Lemma 4.12 and 4.13.Remark 4.17. The substring searching and updating described in Problem 2 can besolved within the bounds claimed in Theorem 2.2. The relative search bounds are provedin Theorem 4.4, while the update bounds are proved in Theorem 4.16.5 Previous WorkSeveral elegant and well-known data structures can be used for solving Problems 1 and 2mentioned in the introduction. Some of them have good average-case behavior and are goodtools in some practical cases. However, they do not support good worst-case searching andupdating operations. Their ine�ciency is mainly due to the methods they use for packinga lot of data into the disk pages in order to avoid that many pages are almost empty after a36
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few updates. This can make their worst-case performance seriously degenerate in externalmemory.We go on to survey the most popular tools used for manipulating external-memory textstrings and we point out their theoretical limitations when applied to our two problems.These tools can be grouped into two main classes: One kind is explicitly designed to workin external memory and contains inverted �les [39], B-trees [9] and their variants, knownas pre�x B-trees [10, 15]. The other kind is useful for indexing a text in main memorywith the aim of performing string matching. It contains compacted tries [22, 36], su�xtrees [3, 25, 34, 48] and su�x arrays [22, 33]. They can easily be adapted for use in externalmemory but at the price of worsening their good performance in main memory.� Inverted �les are an important indexing technique for secondary key retrieval [24,29, 39], in which the roles of records and attributes are reversed. This means that we list therecords having a given attribute instead of listing the attributes of a given record. Inverted�le's components are called inverted lists and occupy very little space (sublinear in manypractical cases). We can use inverted �les for solving Problems 1 and 2 by interpretingthe records as arbitrarily-long texts and the attributes as text substrings (e.g., words, q-grams, etc.). Unfortunately, it is rather di�cult to obtain the attributes when treatingunformatted texts (e.g., DNA sequences) and to allow for arbitrary substring searcheswithout introducing a lot of duplicate information and signi�cant space overhead. Withregard to Problem 2, it turns out that inverted �les support very poor queries and updatesbecause they take unnecessary disk accesses in the worst case.� Pre�x B-trees are B-tree variations whose leaves contain all the keys and whoseinternal nodes contain copies of some keys for routing the B-tree traversal. Since the keysare arbitrarily-long strings, we cannot always stu� a group of them into a single pre�xB-tree node, which is stored in one disk page of bounded capacity B, because a string canbe possibly longer than B. This problem can be overcome by representing the key stringsby their logical pointers and employing the so-called separators to implement the routingkeys in the internal B-tree nodes [10]. Speci�cally, the separator of keys `computer' and`machine' can either be one of them or any short string between them in lexicographicorder (such as `f' or `do'). It goes without saying that the shortest separators [15] arechosen to save as much space as possible. Two popular, empirical strategies have beendevised to keep separators short after a few updates. The �rst one [10] uses the shortestunique pre�x of a key as its separator but it can fail because separator's length can beproportional to key's length and therefore it introduces a lot of duplicate information. Thisoften happens in practice because the keys with a common pre�x are adjacent to eachother in lexicographic order. The second strategy uses a compression scheme to store thekeys in the internal nodes, as in the Unix pre�x B-trees [47]. That is, if a key beginswith the same n characters as its immediate predecessor, the key is stored with its �rstn characters replaced by integer n. This approach saves space but it does not prevent akey from having a lot of characters in the rest of its positions n + 1; n + 2; : : :. In brief,the worst-case performance of pre�x B-trees is very good only for bounded-length keys (i.e.,no more than 255 characters long [47]) because they can exploit B-tree power to solveProblem 1: searching takes O(occB + logB k) disk accesses and updating takes O(logB k)disk accesses. However, this performance becomes poor in the worst case when treating37
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unbounded-length keys, as it occurs in Problem 2.� Su�x arrays and PAT-arrays [22] allow for fast searches whose cost does not de-pend on the alphabet's size [33]. A su�x array essentially stores all the text su�xes inlexicographic order by means of their logical pointers. Thanks to their simplicity, thesedata structures can be adapted for use in external memory by partitioning them into con-tiguous disk pages. There is no limit on key length and searching takes O( pB log2N + occB )disk accesses [22]. From a practical point of view, su�x arrays are the most space-e�cientindexing data structures available because only a pointer per su�x is stored. Nonetheless,su�x arrays cannot be modi�ed any more than inverted �les can be and so the contiguousspace needed for storing them can become too constraining when the text strings get longer.A dynamic version for main memory of su�x arrays has been recently proposed in [17].It can be extended to work in external memory at the price of losing its space optimality(i.e., occupying O(N log2 NB ) disk pages) and achieving a worse searching bound.� Su�x trees and compacted tries in general are elegant, powerful data structureswidely employed in string matching problems [6]. The su�x tree is a compacted trie builton all of the text su�xes: Each arc is labeled by a text substring, where triple (X; i; j) isused to denote a substring X[i; j], and the sibling arcs are ordered according to their �rstcharacters, which are distinct. There are no nodes having only one child except the rootand each node has associated the string obtained by concatenating the labels found alongthe downward path from the root to the node. By appending an end-marker to the text, theleaves have a one-to-one correspondence to the text su�xes so each leaf stores a distinctsu�x. Su�x trees are also augmented by means of some special node-to-node pointers,called su�x links [34], which turn out to be crucial for the e�ciency of the searching andupdating operations. The su�x link from a node storing a nonempty string, say aY for acharacter a, leads to the node storing Y and this node always exists. There can be �(j�j)su�x links leading to a node, where � denotes the alphabet, because we can have one su�xlink for each possible character a 2 �. Su�x trees require linear space and are sometimescalled generalized su�x trees when treating a string set � [3, 25]. Searching for a patternP [1; p] in �'s strings requires O(p log j�j + occ) time, where occ is the number of patternoccurrences. Inserting a string X[1; m] into � or deleting from it takes O(m log j�j) time.Since su�x trees are powerful data structures, it would seem appropriate to use themin external memory. To our surprise, however, they lose their good searching and updatingworst-case performance when used for indexing large text collections that do not �t intomain memory. This is due to the following reasons:a. Su�x trees have an unbalanced topology that is text-dependent because their internalnodes are in correspondence to some repeated substrings. Consequently, these treesinevitably inherit the drawbacks pointed out in scienti�c literature with regard topaging unbalanced trees in external memory. There are some good average-casesolutions to this problem that group �(B) nodes per page under node insertionsonly [29, Sect.6.2.4] (deletions make the analysis extremely di�cult [41]), but theycannot avoid storing a downward path of k nodes in 
(k) distinct pages in the worstcase.b. Since the outdegree of a node can be �(j�j), its pointers to children might not �t into38
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O(1) disk pages so they would have to be stored in a separate B-tree. This causes anO(logB j�j) disk access overhead for each branch out of a node.c. Branching from a node to one of its children requires further disk accesses in order toretrieve the disk pages containing the substring that labels the traversed arc becauselabels are pointers in order to occupy constant space.d. Updating su�x trees under string insertions or deletions [3, 25] requires the insertionor deletion of some nodes in their unbalanced structure. This operation inevitablyrelies on merging and splitting disk pages in order to occupy �(NB ) of them. Thisapproach is very expensive: splitting or merging a disk page can take O(Bj�j) diskaccesses because �(B) nodes can move from one page to another. The �(j�j) su�xlinks leading to each node moved must be redirected and they can be contained indi�erent pages.We can conclude that adapting su�x trees to solve Problems 1 and 2 is not e�cientin the worst case. Searching for a pattern of length p takes O(p logB j�j + occ) worst-casedisk accesses in both problems according to Points a{c. Inserting or deleting an m-lengthstring takes O(m logB j�j + Bj�j) disk accesses in Problem 1 because there can be O(1)page splits or merges as described in Point d; and O(mBj�j) disk accesses in Problem 2because there can be �(m) page splits or merges.From an average-case-analysis point of view, compact trie's performance in externalmemory is heuristic and usually con�rmed by experimentation [5, 22, 40]. Recently, Clarkand Munro [13] have obtained an e�cient implementation of su�x trees in external memoryby compactly representing them via Patricia tries. This data structure allows to solveProblem 2 with O( hpp + logpN) disk accesses for Substring Search(P ), where h � N isPatricia trie's height. Inserting or deleting a string in � costs at least as searching for allof its su�xes individually. The solution is practically attractive but does not guaranteeprovably good performance in the worst case.6 Some Applications6.1 P-strings and Software DuplicationThe parameterized pattern matching problem was introduced in [7] with the aim of �ndingthe program fragments in a software system that are identical except for their systematicchange of parameters. The program fragments are in the form of token sequences producedby a lexical analyzer and encoded by some parameterized strings, called p-strings. From aformal point of view, p-strings are sequences of characters taken from two disjoint orderedalphabets � and �, where � contains the �xed symbols (i.e., the �xed tokens) and � containsthe parameter symbols (i.e., identi�ers and constants). A p-match of two p-strings occurswhen one p-string can be transformed into the other by one-to-one parameter renaming. Forexample, let us take � = fa; bg and � = fx; y; zg. There is a p-match of p-strings axxbyxaand ayybzya by simultaneously replacing x with y and y with z. Given two p-strings X39
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and Y , there is a p-occurrence of X in Y , if there is a p-match of X and Y [i; i + jXj � 1]for an integer i (e.g., there is a p-occurrence of zbxz in axxbyxa for i = 3).A su�x tree generalization to p-strings, called p-su�x tree, was introduced in [7] andsubsequently improved in [30], to perform online pattern matching on p-strings e�ciently.Some other algorithms that were designed for this new paradigm also had to deal properlywith the dynamic nature of parameter renaming in p-strings [4, 8, 26]. The main problemin designing e�cient p-string algorithms is concerned with Properties (1) and (2), whichhold for any ordinary two strings S and T , while Property (2) does not hold for p-strings [7]:(1) Common Pre�x Property: If aS = bT , then S = T .(2) Distinct Right Context Property: If aS = bT and aSc 6= bTd, then Sc 6= Td.Since Property (2) is used for de�ning su�x links of su�x tree nodes, it creates someproblems for p-su�x tree construction. Since String B-trees only need Property (1) inLemma 4.8, they work for p-strings after undergoing some slight changes. We let � denotealphabet � [ IN, where IN is the set of non-negative integers disjoint from �. We de�nean operation prev(X) that transforms a p-string X into a string in �� according to [7]:A constant symbol in � is mapped into itself. A parameter occurrence in � is mappedinto 0 if it is the leftmost one. Otherwise, the parameter occurrence is mapped into theinteger that denotes the distance from its previous occurrence's position. For example,prev(axxbyxa) = prev(ayybzya) = a01b03a. Any two p-strings X; Y have a p-match ifprev(X) = prev(Y ). As stated in [7], given prev(Y ) and one of Y 's su�xes, say Y [j;m], anarbitrary character in prev(Y [j;m]) can be computed by a constant number of arithmeticoperations.Let us now examine the natural extension of Problems 1 and 2 to p-strings. We letProblem 2 stand for both and show in Theorem 6.1 below that String B-trees can beextended to solve the problem without any loss in e�ciency. Set � is made up of some p-strings whose total length is N ; set SUF (�) is made up of the strings obtained by applyingprev to the su�xes of �'s p-strings, i.e., SUF (�) = fprev(�[i; j�j]) : 1 � i � j�j and � 2 �g.It is worth noting that these su�xes are sorted according to a new order �PL , where X �PL Yif and only if prev(X) �L prev(Y ). We now examine the String B-tree built on SUF (�).In searching for p-strings, we have to transform the pattern p-string into a pattern stringin �� by means of prev. We then search for the pattern string in the String B-tree by usingthe string procedure in Section 4.1. Inserting a p-string Y [1; m] in � consists of insertingsu�x prev(Y [i;m]) into the current String B-tree, for i = 1; 2; : : : ; m. Our considerationsin Section 4.3 extend to this case because we only use Property (1). For example, we letprev(Sl�1) be a string of SUF (�) that shares its �rst hi�1 characters with prev(Y [i�1; m]),as required by Condition-B(i � 1). We identify node � by means of succ(Sl�1), which isalso well-de�ned for p-strings due to Lemma 4.8 and Property (1). Finally, we executeSB-Search-Up-Down(prev(Y [i� 1; m]), �, maxf0; hi�1 � 1g) and continue as in Section 4.3.A p-string deletion can be performed by the procedure described in Section 4.4. We cannow state the following result:Theorem 6.1. Let � be a set of p-strings whose total length is N . The String B-treebuilt on � occupies �(N=B) disk pages. Searching for all the pocc occurrences of a p-string P [1; p] in �'s p-strings takes O(p+poccB +logB N) worst-case disk accesses. Inserting ap-string Y [1; m] into set � or deleting it takes O(m logB(N +m)) worst-case disk accesses.40
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We can use String B-trees on p-strings in main memory by letting B = O(1). Whenthe alphabet is large (i.e., either j�j = O(N) or j�j = O(N)), we achieve an alphabet-independent search that requires O(p+logN+pocc) time and improves the O(p logN+pocc)searching bound in [7, 30]. With a large alphabet, String B-tree construction requires thesame O(N logN) time complexity as the p-su�x tree's. For a constant size alphabet, thebounds in [7, 30] are better than ours.6.2 Database IndexingWe can maintain several indices on the same database without copying the (multiple) keystrings in the indices but we use our solution to Problem 1. This is important in compoundattribute organizations [29, Sect 6.5] to maintain the lexicographic order of the records'combined attributes without having to make any copies. As a result, String B-trees turnout to be a powerful tool for indexing databases.Let us consider a database (not necessarily a text database) with variable-length recordsD = fR1; R2; : : : ; Rkg and an alphabet � (e.g., � is made up of the ASCII characters).We introduce an indexing function f : D ! �� that transforms a record Ri into a stringKi = f(Ri), such that Ri � Rj if and only if Ki �L Kj, where 1 � i; j � k and �L isthe lexicographic order. For example, when Ri is an employee's record, Ki is the birthdayin the string format `YYYYMMDD', where `YYYY' is the year, `MM' is the month and`DD' is the day, or Ki is the string concatenation of some �elds in Ri, such as employee'sname, o�ce, phone number and so on. Since f maps the records into some strings, weallow f to be powerful enough to handle any kind of string manipulations on the originalrecords' �elds (e.g., we take some substrings, concatenate them, reverse them, etc.). Thatis, Ki = f(Ri) is a \virtual string" because it does not necessarily appear in Ri. In thiscase, the logical pointer for Ki leads to Ri, which we have to apply f to.We use Problem 1 on string set K = fK1; : : : ; Kkg and provide an index that onlyrequires O(k) space whatever the total string length is (Theorem 2.1). We recompute f(Ri)every time we need to (compare) access a string Ki. Even though f(Ri)'s computationmight be expensive in some cases, we load and compare only one string per level of theString B-tree because of the Patricia trie layout in the nodes of the String B-tree, as shownin Section 3.1. Consequently, our approach actually requires very few string computationsand allows us to keep D's records ordered according to a general-purpose indexing functionf under the insertion and deletion of individual records (Theorem 2.1).We can compare our solution to the one obtained by pre�x B-trees. They introducestring duplication and require O(Pki=1 jKij) space (usually much larger than k) because theyneed to store the strings explicitly in the index by means of some heuristics (see Section 5).Conversely, String B-trees exploit lexicographic order better and take advantage of thelongest common pre�x of any two strings. For example, let � be the longest common pre�xof two strings Ki = �c� and Kj = �c0� 0, with arbitrarily-long strings �; �; � 0 and singlecharacters c 6= c0. Pre�x B-trees [10] store string Ki entirely and string Kj as integer j�jand su�x c0� 0, while String B-trees only use Ki and Kj logical pointers, together with j�j; cand c0 in the Patricia trie. Consequently, String B-trees' space usage is proportional to thenumber of strings involved and not to their total length. We achieve a signi�cant worst-casespace saving with respect to pre�x B-trees and maintain a very competitive cost.41
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6.3 Dynamic Su�x ArraysDynamic su�x arrays [17] are a dynamic version of su�x arrays [33] and we implementthem in linear space without using the naming technique of [27]. This allows us to obtainbetter performance than su�x trees for large alphabets because we can reduce searchingtime from O(p logN + occ) to O(p+ logN + occ). This alphabet-independent time boundwas previously obtained only for a static string set by means of su�x arrays.The dynamic su�x array data structure DSA� combines the exibility of su�x treeswith the lexicographic order of su�x arrays. It is a balanced search tree whose leaves storeSUF (�)'s strings, in �L-order. We let DSUF (�) � SUF (�) be a set of su�xes logicallydeleted from SUF (�). The dynamic su�x array supports the following operations:DSA-Search(P ): We �nd the sublist of the su�xes in SUF (�)�DSUF (�) whose pre�xis P .DSA-Insert(Y ): We insert all of Y 's su�xes into SUF (�).DSA-Delete(S): We mark a su�x S 2 SUF (�) as logically removed and insert it intoDSUF (�).DSA-Undelete(S): We unmark a su�x S 2 DSUF (�) and remove it from DSUF (�).We go on to implement the above operations. We let B = O(1) and use the StringB-tree data structure in main memory. It is now a balanced search tree that satis�es theadditional constraint that each leaf contains exactly one string. The leaves containing thestrings in SUF (�) � DSUF (�) are double-linked in a separate list LS. This list is keptwith another list, lcp(LS), that contains the longest common pre�x length of any twoadjacent strings in LS. The leaves containing DSUF (�)'s strings are marked as logicallydeleted and each internal node is also marked if all its descendants are marked recursively.It clearly follows:Fact 6.2. Given a leaf s of the String B-tree, the nearest non-marked leaf s0 2 SUF (�)�DSUF (�) ON its left (resp., right) can be identi�ed in O(logN) time.The update operations on DSA� can be implemented in a straightforward way byusing the corresponding update operations on String B-trees in Sections 4.3 and 4.4. Theimplementation of DSA-Search(P ) is slightly di�erent from the one described in Section 4.1because it has to take into account the fact that a su�x in SUF (�) having pre�x P mightbe marked as deleted and therefore should not be listed because it belongs to DSUF (�).Our aim now is to �nd the sublist dLS of LS that contains all the su�xes having pre�x Pwithin a time complexity that does not depend on DSUF (�)'s size, when these su�xesbelong to SUF (�)�DSUF (�). We design the search procedure in such a way that if dLSis not empty, it returns two leaves vL and vR that delimit dLS. In this way, dLS's size doesnot inuence total time complexity.We �nd leaves vL and vR by searching for the leaf v that stores su�x Xv, such thatXv = maxfX 2 SUF (�) : X <L Pg according to Theorem 4.4's proof. We then applyFact 6.2 to leaf v and retrieve vL by identifying the leftmost unmarked leaf on v's right42
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(inclusive). Leaf vR can be found symmetrically by means of leaf w, such that Xw =minfX 2 SUF (�) : P <L Xg. We know that vL and vR are between v and w if and onlyif dLS is not empty, and this condition can be checked in O(logN) time. Moreover, whenv = vL = vR or vL = vR = w, we can check to see if P is a pre�x of Xv or Xw, respectively.We have:Theorem 6.3. The dynamic su�x array DSA� for a string set � whose total length isN can be implemented by an augmented String B-tree that occupies optimal �(N) space.DSA-Search(P ) requires O(p + logN) time; DSA-Delete and DSA-Undelete take O(logN)time; DSA-Insert applied on an m-length string takes O(m log(N +m)) time.7 ConclusionsIn this paper, we have proposed an external-memory data structure, the String B-tree, thate�ciently implements operations such as Pre�x Search, Range Query, Substring Search, andstring insertions and deletions, on a collection of arbitrary-long strings. While its boundsare provably good in the worst case like the ones of regular B-trees, its supported operationsare more powerful because it manages strings of arbitrary length. String B-trees can bealso successfully applied to several other interesting problems, such as the ones discussed inthe introduction and Section 6, and the ones presented in [20]. They also e�ciently work inthe parallel-disk model [1, 46] by performing disk clustering with the so-called disk-stripingtechnique (see [38] for its description).Considering their good theoretical bounds, it would be interesting to investigate thepractical behavior of String B-trees in order to validate the general approach and singleout the theoretical re�nements that are also e�ective in a practical setting. A preliminaryset of experiments carried out in [19] have shown that String B-trees are promising: StringB-trees lead to fast searches and can be updated in a reasonable amount of time.Acknowledgments.We thank Je�rey Vitter, who showed us a way to adapt the amortized analysis in order toobtain the worst-case bounds for the update operations in Theorem 4.16. We warmly thankDon Knuth who pointed out to us reference [37]. We are grateful to Dany Breslauer forpointing out the relationship between String B-trees and string sorting in the comparisonmodel. We also warmly thank Brenda Baker, Ra�aele Giancarlo, Mike Goodrich, RaoKosaraju, Fabrizio Luccio and Renzo Sprugnoli for their numerous, helpful discussions onthe early results of this paper.References[1] Aggarwal, A., and Vitter, J. S. The Input/Output complexity of sorting and relatedproblems. Communications of the ACM (1988), 1116{1127.[2] Aho, A. V., Hopcroft, J. E., and Ullman,J. D. The Design and Analysis of ComputerAlgorithms. Addison-Wesley, Reading, MA, 1974.43
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